TD1: Approximation de fonctions

1 Méthode des moindres carrés

Exercice 1 (quartet d'Anscombe). Le statisticien Francis Anscombe a défini en 1973 plusieurs ensembles de données ayant une propriété intéressante. Les voici

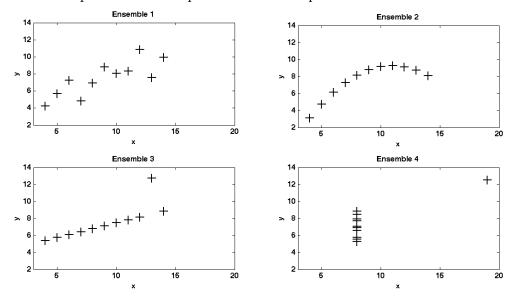
x	y	x	y	x	y	x	y
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

- 1. A l'aide d'une calculatrice, calculer les coefficients de régression linéaire des 4 ensembles.
- 2. Que vaut le minimum de

$$S(a,b) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

pour chaque ensemble?

- 3. Que remarquez vous?
- 4. Voici une représentation graphique des 4 jeux de données. Dans quels cas l'utilisation de la régression linéaire semble t-elle pertinente ? Dans quels cas ne l'est-elle pas ? Justifier.



Exercice 2 (régression linéaire pondérée). Soit le modèle de régression linéaire

$$f(x, a, b) = ax + b$$

Lorsque on veut estimer les paramètres adéquats pour ce modèle en fonction des données (n points (x_i, y_i) , $i = 1, \ldots, n$) et de leurs incertitudes, on cherche les paramètres a et b minimisant

$$\chi^{2}(a,b) = \sum_{i=1}^{n} \left(\frac{y_{i} - ax_{i} - b}{\sigma_{i}} \right)^{2} = \sum_{i=1}^{n} w_{i} (y_{i} - ax_{i} - b)^{2}$$

avec σ_i l'écart-type de l'erreur commise sur la mesure de y_i . On a $\sigma_i = \frac{1}{\sqrt{w_i}}$. Notons les moyennes pondérées \overline{x}^p définies de la manière suivante :

$$\overline{x}^p = \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i} \qquad \overline{y}^p = \frac{\sum_{i=1}^n w_i y_i}{\sum_{i=1}^n w_i}$$

1. Montrer qu'au minimum de χ^2 , b vaut

$$b = \overline{y}^p - a\overline{x}^p$$

2. Montrer qu'au minimum de χ^2 , a vaut

$$a = \frac{\sum_{i=1}^{n} w_i (x_i - \overline{x}^p) (y_i - \overline{y}^p)}{\sum_{i=1}^{n} w_i (x_i - \overline{x}^p)^2}$$

3. Supposons que les écart-types des erreurs commises sur y_i soient égaux. Que valent a et b?

2 Interpolation

Exercice 3. La mesure de la tension aux bornes d'un dipôle a donné les valeurs suivantes

t[s]	0	3	4
U[V]	-8	4	0

On suppose que cette tension varie suffisamment lentement pour qu'on puisse l'approximer par un polynôme de degré faible. Estimez à partir de ces données l'instant \hat{t} où la tension devrait atteindre son maximum, ainsi que la tension \hat{U} en ce maximum.

Exercice 4. Le polynôme P interpole la fonction f suivante aux points d'abscisses 1, 2, 4.

$$f(x) = \frac{4}{x}$$
 $P(x) = \frac{1}{2}x^2 - \frac{7}{2}x + 7$

- 1. Vérifier que P interpole bien f aux points d'abscisses 1, 2, 4.
- 2. Calculer l'erreur

$$\epsilon(x) = f(x) - P(x)$$

- 3. Quand cette erreur prend elle sa valeur maximale pour x dans [1, 4]?
- 4. Que faire pour réduire cette erreur?

3 Extrait de l'examen de 2012

3.1 Interpolation polynômiale (4 points)

On veut calculer les valeurs d'une fonction f(x) pour toutes les valeurs de x, mais on ne connaît pas f explicitement. Ceci se produit typiquement lorsque f n'est connue qu'en certains points expérimentaux. On considère la fonction f dont 3 points du graphique sont connus (f(0) = 1, f(1) = 3 et f(2) = 7). On propose de chercher f dans la famille des polynômes.

Question 1. Quel est le degré n du polynôme d'interpolation P tel que le problème admette une solution unique?

Question 2. Écrire le système d'équations qui détermine les coefficients (a,b,c) de ce polynôme ($P(x) = a + bx + cx^2$) et le résoudre.

Question 3. Écrire directement la solution grâce à la forme de Lagrange.

3.2 Approximation au sens des moindres carrés (4 points)

On considère toujours la fonction f connue expérimentalement en trois points. Cependant, on considère que les mesures sont entachées d'erreurs ($f(0)\approx 1$, $f(1)\approx 3$ et $f(2)\approx 7$) et on cherche une fonction f de la forme $f(x)=a\sqrt{|x-1|}+bx^2$.

Question 4. À priori, peut-on trouver une fonction de la forme $f(x) = a\sqrt{|x-1|} + bx^2$ qui passe exactement par les trois points expérimentaux?

Question 5. Écrire le problème de minimisation qui détermine les coefficients a et b au sens des moindres carrés.

Question 6. Déterminer le système d'équations linéaires à résoudre. Résoudre le système.