
Refining Procedures on Mesh via Algebraic Fitting

Tibor Stanko∗

Supervised by: doc. RNDr. Pavel Chalmovianský, PhD.†

Faculty of Mathematics, Physics and Informatics
Comenius University
Bratislava / Slovakia

Abstract

A new nonlinear refinement algorithm for surfaces is pre-
sented in this work. Our scheme operates on triangular
meshes and interpolates input data. Each triangle is as-
sociated with a small set of neighbouring points and nor-
mals. A low degree algebraic surface (quadric) is fitted
to this set with respect to the chosen objective function.
The new vertex is taken from the computed quadric. Such
a setup overcomes the limitations of the linear schemes.
Our experiments show the scheme might be capable of re-
constructing quadratic surfaces from a coarse approximat-
ing mesh. A comparison of the proposed method with the
linear schemes is shown, as well as an application to the
compression of a large-scale mesh.

Keywords: mesh refinement, subdivision surface, non-
linear scheme, quadric, mesh compression

1 Introduction

The problem of efficient and accurate geometry modelling
of solids has been present in computer graphics from the
very beginning. A new approach for boundary representa-
tion of three-dimensional objects has emerged in the late
1970s. What became known as subdivision surfaces is
now widely used in domains such as CAGD, geometry
modelling for animation, level-of-detail modelling, mul-
tiresolution analysis. For more details on subdivision sur-
faces and related work, see sections 2 and 3.

A novel nonlinear scheme is proposed in our paper.
Even though the scheme is nonlinear, it only requires solv-
ing a well-formed system of linear equations for each tri-
angle of the subdivided mesh. For details on the method
and the implementation, see sections 4 and 5.

In section 6, we experiment with various sets of weights
and analyse the influence of the normal vectors on the limit
surface generated by our method. We also show how the
resulting method can be used to compress triangular mesh
obtained from laser scanning. Such a mesh usually con-
sists of large datasets, typically ∼ 105−106 vertices. Ap-
plying our scheme on properly chosen decimation of input

∗ts@tiborstanko.sk
†pavel.chalmoviansky@fmph.uniba.sk

mesh, we are able to reconstruct scanned data very accu-
rately.

The proposed scheme can also be used for the recon-
struction of quadratic surfaces from a coarse approximat-
ing mesh. We provide a demonstration by reconstructing
the sphere from the cube.

2 Subdivision Surfaces

Subdivision is a way of representing smooth shapes in
computer [1]. The basic idea of subdivision is to define
surface S as a limit of iterative refinement of mesh

S = lim
k→∞
Mk, (1)

where the mesh Mk+1 is obtained by applying set of re-
finement rules on the meshMk, the meshM0 is initial.

A subdivision scheme is interpolating if the limit sur-
face interpolates the vertices of the initial mesh. Other-
wise, the scheme is approximating.

Each mesh M consists of the topological component
(vertices, edges, faces) and the geometric component (ver-
tex positions in R3). Likewise, every subdivision scheme
has topological step and geometric step. In the topologi-
cal step, the topology of the mesh in the next iteration is
determined. New vertices, edges and faces are inserted,
and some of the old ones are removed. Typical operations
in this step include inserting new vertices and leaving out
some of the old, introducing new edges and faces, flipping
an edge. In the geometric step, the new positions of the
vertices are computed.

Linear schemes use linear combinations of the vertices
from the previous iteration to compute the new positions.
Consequently, vertices in the arbitrary iterationMk (par-
ticularly the limit surface S =M∞) can be expressed as
linear combinations of initial meshM0 in a natural way.
For nonlinear schemes, this condition does not hold true.

3 Related Work

Early work on the linear refinement of triangular meshes
has been done by Loop [2], who designed an approximat-
ing scheme. An interpolating scheme was proposed by

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

Dyn et al. [3] and later modified by Zorin et al. [4]. An-
other approximating scheme was proposed by Kobbelt [5].
For an overview of existing linear schemes, see [6] or [7].
Extensive bibliography on the topic can be found in the
latter.

While linear methods for surface refinement have been
closely studied in the past decades, nonlinear methods
have received little attention. Linear schemes work well in
cases when only the positions of vertices are known. The
difficulties arise when we try to make use of data coming
from derivatives, such as tangent or curvature. Nonlinear
schemes seem to be the right mechanism to bridge this
gap.

Only a few nonlinear schemes for surface refinement
have been introduced so far. Interpolating triangular algo-
rithms were proposed in [8], [9], [10]. The scheme pre-
sented in this paper was inspired by the work of Chal-
movianský and Jüttler [11], who introduced a nonlinear
circle-preserving algorithm for curve refinement.

4 Refinement via Algebraic Fitting

In this paper, we introduce a different approach to non-
linear subdivision of triangular meshes. The basic idea of
the proposed method is to look for the new vertices on the
quadric surface, which is the best local approximation of
the mesh with respect to the chosen objective function. In
the text, we talk about quadric fitting refinement or simply
QFR when referencing our method.

4.1 Topological step

The quadric fitting refinement uses the topological step in-
troduced by Kobbelt [5]. A new vertex is introduced per
triangle face and connected to all vertices of the triangle.
Old edges are flipped. Figure 1 shows the topological step
on the regular grid for better illustration.

Figure 1: The topological step of Kobbelt’s
√

3-
subdivision used in our scheme.

4.2 Computing position of the new vertex

Since the proposed scheme is interpolating, the positions
of the old vertices remain unchanged. Therefore, the focus
of the scheme lies in the computation of the position of the
new vertex.

Suppose we want to subdivide the meshM. Let V (M)
be the set of all vertices of M. We are looking for

the position of the new vertex v introduced in the tri-
angle T = v0v1v2. The set NT of vertices is called the
m−neighbourhood of T for some m ∈ N if

NT := {p ∈ V (M) : DT (p)≤ m} (2)

for some m ∈ N, where

DT (p) := min
ṽ∈V(T)

(D (p, ṽ)) (3)

is a relative distance of vertex p from the triangle T ,
D(x,y) is a graph distance onM (number of edges in the
shortest path connecting x and y). We choose m to be the
smallest natural number, for which |NT | ≥ 9. Typically,
this yields m = 1 or m = 2. The choice of 9 as the minimal
cardinality is justified later in the text (in section 4.3). An
example of 1-neighbourhood is shown in figure 2.

Figure 2: Visualisation of the set NT (1-neighbourhood)
for the triangle T on the regular grid.

The vertex v is picked out of the quadric surface

Q :=
{
(x,y,z) ∈ E3 : f (x,y,z) = 0

}
, (4)

where

f (x,y,z) = a11x2 +a22y2 +a33z2 +2a12xy+2a13xz+

+2a23yz+2a14x+2a24y+2a34z+a44

(5)

is an unknown trivariate polynomial with real coefficients.
Using matrix notation, the equation (5) is written down to

f (x) = x̃>A x̃, (6)

where

x̃ :=

x
y
z
1

 , A :=

a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44

 ,

x̃ stands for the homogenous coordinates of x ∈ E3, A de-
notes the symmetric matrix of the coefficients ai j from the
equation (5).

4.3 Fitting quadric to vertices

We look for such a quadric Q that is the best approxi-
mation of the mesh M in a close neighbourhood of the

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

triangle T . For this purpose, we use the set NT defined
in (2). In order to specify Q, exactly 10 unknown coef-
ficients

{
ai j, 1≤ i≤ j ≤ 4

}
need to be computed up to a

non-zero multiple. This clarifies the required condition on
the cardinality of NT.

To improve the reading comprehension of this section,
we use the following notation for gradient operators:

∇
a f =

(
∂ f

∂a11

∂ f
∂a22

∂ f
∂a33

∂ f
∂a12

· · · ∂ f
∂a44

)
(7)

denotes gradient with respect to variables a11, . . . ,a44,
while

∇
x f =

(
∂ f
∂x

∂ f
∂y

∂ f
∂ z

)
(8)

is the gradient with respect to x,y,z.
Now, suppose NT = {pi , i = 1, . . . ,n}, where pi =

(xi,yi,zi). Ideally, Q interpolates NT, meaning f vanishes
in every point from NT. In general case though, such an
interpolation cannot be guaranteed. Instead, we compute
the vector

~a :=
(
a11 · · · a44

)> (9)

of the unknown parameters such that the objective function

F (a11, . . . ,a44) =
n

∑
i=1

w̃i f 2 (pi)+ ŵi ‖∇x f (pi)−~ni‖2

(10)
is minimized and

~amin = argmin
a11,...,a44

F (a11, . . . ,a44) . (11)

In (10), the vector~ni = (x̂i, ŷi, ẑi)
> denotes the normal vec-

tor of M at the vertex pi. The scalars w̃i, ŵi > 0 are the
associated real weights, which are specified later in the text
(in section 6.1).

The necessary conditions for minima of the function F
give

∇
aF (~a) =~0, (12)

a system of linear equations

∂ F
∂ai j

(a11, . . . ,a44) = 0, 1≤ i≤ j ≤ 4. (13)

If we denote

F̃ (~a) =
n

∑
i=1

w̃i f 2 (pi) , (14)

F̂ (~a) =
n

∑
i=1

ŵi ‖∇x f (pi)−~ni‖2 , (15)

then F = F̃+ F̂ . Therefore,

∇
aF = ∇

a F̃+∇
a F̂ . (16)

Every vertex pi contributes to the objective function in
two parts. The function F̃ measures the distance of pi to
the quadric Q, weighted by w̃i. The function F̂ measures

the deviation of the computed normal from the prescribed
normal (at pi), weighted by ŵi.

Let us have a look at the first term on the right side
of (16). Denote φi := φ(pi), where

φ(pi) := (∇a f)(pi) =
(
xi

2 yi
2 · · · 2zi 1

)>
. (17)

Using (17) and the fact that f (pi) = φ>i ~a, we get

∇
a F̃ =

n

∑
i=1

w̃i 2 (∇a f)(pi) f (pi) =

= 2
n

∑
i=1

w̃i φi φ
>
i ~a = 2

n

∑
i=1

w̃i Φi~a = 2 Φ~a.
(18)

Here, we have used the notation Φi := φiφ
>
i and Φ :=

∑
n
i=1 w̃i Φi for the corresponding matrices.
Now, we analyse the second term on the right side

of (16). First, the gradient of f with respect to x,y,z is
computed

∇
x f (pi) = 2

a11xi +a12yi +a13zi +a14
a12xi +a22yi +a23zi +a24
a13xi +a23yi +a33zi +a34

=:

αi
βi
γi

 ,

(19)
where αi,βi,γi are dependent on ~a. Recall the coordinates
of normal~ni at the vertex pi are (x̂i, ŷi, ẑi). Consequently,

‖∇x f (pi)−~ni‖2 = (αi− x̂i)
2 +(βi− ŷi)

2 +(γi− ẑi)
2 .
(20)

Applying the gradient operator ∇a on (20), we have

∇
a
(
‖∇x f (pi)−~ni‖2

)
=

= ∇
a
(
(αi− x̂i)

2 +(βi− ŷi)
2 +(γi− ẑi)

2
)
=

= 2(αi− x̂i)∇
a
αi +2(βi− ŷi)∇

a
βi +2(γi− ẑi)∇

a
γi.

(21)

Note that applying ∇a on αi,βi and γi, we get the vectors

∇
a
αi = 2

(
xi 0 0 yi zi 0 1 0 0 0

)>
,

∇
a
βi = 2

(
0 yi 0 xi 0 zi 0 1 0 0

)>
,

∇
a
γi = 2

(
0 0 zi 0 xi yi 0 0 1 0

)>
.

(22)

Each of these vectors has only four non-zero coordinates.
Plugging (22) into (21) and substituting into (15) yields

∇
a F̂ (~a) =

n

∑
i=1

4 ŵi

xi (αi− x̂i)
yi (βi− ŷi)
zi (γi− ẑi)

(αi− x̂i)yi +(βi− ŷi)xi
(αi− x̂i)zi +(γi− ẑi)xi
(βi− ŷi)zi +(γi− ẑi)yi

αi− x̂i
βi− ŷi
γi− ẑi

0

= 4

n

∑
i=1

ŵi (2Ψi~a−Ωi) ,

(23)

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

where

Ψi :=

x2
i 0 0 xi yi xi zi 0 xi 0 0 0
0 y2

i 0 xi yi 0 yi zi 0 yi 0 0
0 0 z2

i 0 xi zi yi zi 0 0 zi 0
xi yi xi yi 0 x2

i +y2
i yi zi xi zi yi xi 0 0

xi zi 0 xi zi yi zi x2
i +z2

i xi yi zi 0 xi 0
0 yi zi yi zi xi zi xi yi y2

i +z2
i 0 zi yi 0

xi 0 0 yi zi 0 1 0 0 0
0 yi 0 xi 0 zi 0 1 0 0
0 0 zi 0 xi yi 0 0 1 0
0 0 0 0 0 0 0 0 0 0

,

Ωi := (xi x̂i, yi ŷi, zi ẑi, xi ŷi+yi x̂i, xi ẑi+zi x̂i, yi ẑi+zi ŷi, x̂i, ŷi, ẑi, 0)>.

(24)

Introducing the notation

Ψ :=
n

∑
i=1

ŵi Ψi, Ω :=
n

∑
i=1

ŵi Ωi, (25)

the equation (23) becomes

∇
a F̂ (~a) = 8Ψ~a−4 Ω. (26)

Using the equations (12), (18) and (26), we obtain the
desired system of linear equations in matrix form

∇
aF = 2 Φ~a+8Ψ~a−4 Ω =

= (2Φ+8Ψ)~a−4 Ω = Γ−4Ω = 0,
(27)

with its explicit solution

~amin = 4 Γ
−1

Ω, (28)

provided Γ = 2Φ+8Ψ is an invertible matrix.

4.4 Picking the new vertex

After the quadric Q has been found by solving the sys-
tem (27), we are able to compute the coordinates of the
new vertex v. Denote

bT :=
v0 +v1 +v2

3
(29)

to be the barycenter of the triangle T .

4.4.1 Intersection of normal line and quadric

Our first approach is to find the position of v as the inter-
section of quadric Q and the normal line n̄ of the triangle
T . The line n̄ is defined parametrically as

n̄≡ bT + t~nT , t ∈ R. (30)

The vector~nT is defined as the unit normal of the plane de-
termined by the vertices of T (modulo the vector signum),
see fig. 3. Denote the intersection of Q and n̄

vT = bT + t0~nT , (31)

or, coordinate-wise,xv
yv
zv

=

xb
yb
zb

+ t0

xn
yn
zn

 (32)

T

Q

n̄
p̄

vT

vQ

~nT

~nvQ

bT·

·

Figure 3: Schematic comparison of the two approaches for
picking the new vertex from the quadricQ. The technique
described in section 4.4.1 yields vT , while the technique
from 4.4.2 yields vQ.

for some t0. Plugging (31) into (4), (5), we get

a11x2
v +a22y2

v + · · ·+a34zv +a44 = 0. (33)

This leads to the quadratic equation in t0 of the form

At2
0 +2Bt0 +C = 0 , (34)

where the coefficients A,B,C ∈ R are

A = xn (a11xn +a12yn +a13zn)+

yn (a12xn +a22yn +a23zn)+

zn (a13xn +a23yn +a33zn) ,

B = xn (a11xb +a12yb +a13zb +a14)+

yn (a12xb +a22yb +a23zb +a24)+

zn (a13xb +a23yb +a33zb +a34) ,

C = f (xb,yb,zb) .

Denote the roots of (34) as t1, t2. The parameter t0 is cho-
sen as

t0 =

0, if B2−4AC < 0;
t1, if |t1|< |t2| ;
t2, otherwise.

(35)

If the parameters t1, t2 are real, they determine two points
on n̄. We pick the point which is closer to bT . If t1, t2 are
complex, the barycenter bT is picked as the new point.

4.4.2 Foot point of barycenter

Although the procedure described in section 4.4.1 is easy
to implement, it does not generate optimal choice of the

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

10 100 1 000 3 500 10 000 100 000
0.001

0.01

0.1

1

10

100

number of faces

time [s]

Figure 4: Experimental measurements of the time com-
plexity of our algorithm. In average, we were able to pro-
cess 3 500 faces per second.

new vertex. In some cases, the intersection of Q and n̄
does not exist or is relatively distant from the mesh. The
distant vertices create unwanted local sharpness (spikes).
Moreover, if the initial mesh is not closed, the spikes nat-
urally occur around the boundary.

These issues are resolved by picking the new vertex as
a foot point of perpendicular line p̄ from bT onto Q, see
figure 3. To find the foot point, we use the algorithm de-
scribed by Hartmann in [12, section 5.1.2].

5 Implementation

Implementation of our method was done in C++ and com-
piled under GCC 4.8.1. Both techniques for picking the
new vertex from the quadric were implemented. The re-
sults in this paper were obtained using the foot point algo-
rithm exclusively.

For mesh manipulation, we decided to use an open-
source library OpenMesh [13], developed by working
group of Leif Kobbelt at RWTH Aachen University. We
chose OpenMesh for two main reasons:

� meshes are represented using doubly-connected edge
list (DCEL), which allows fast performance of the
mesh operations.

� OpenMesh contains application Subdivider with
built-in framework for subdivision surfaces. Subdi-
vider also implements various linear triangular subdi-
vision schemes (Loop,

√
3, Modified Butterfly) over-

loading abstract base class SubdividerT. Simple
GUI is provided using Qt and GLUT. User can load
and save mesh in popular formats (.obj, .off, .ply) and
iteratively apply subdivision operators.

To solve the linear system (27), we used an open-source
C++ linear algebra library Armadillo [14].

Computational complexity of the quadric fitting refine-
ment is O (F), where F is the number of processed faces.

Figure 4 shows the relation between the time needed to
perform one iteration of the QFR and the number of tri-
angles in the refined mesh. All the measurements were
performed on the PC with Intel Core i7 3517 Ivy Bridge
processor running Ubuntu 13.10 Saucy Salamander.

6 Results

6.1 Choosing the weights

Theoretically, any positive real number can be used as a
weight w̃i of the vertex pi or as a weight ŵi of the normal
~ni. In practice though, the weights have to be chosen care-
fully as their choice can influence the result significantly.

The used weights are dependent on the graph distance
DT (pi) =:Di

T between the vertex pi ∈NT and the triangle
T , see (3). Given the initial values vi,ni and factors v f ,n f ,
the weights are computed as

w̃i = vi vD
i
T

f , ŵi = ni nD
i
T

f . (36)

We demonstrate the effect of different sets of weights
on the Stanford bunny, see figure 5. The bunny mesh was
decimated to 3000 faces and refined using QFR with the
initial values and factors

vi = 1, v f = 1, ni = 1, n f = 1; (37a)
vi = 1000,v f = 1, ni = 0.0001,n f = 0.0001; (37b)
vi = 1000,v f = 0.0001,ni = 0.0001,n f = 0.0001. (37c)

It is clear the strategy of taking all data with the same
weights as in (37a) does not produce fine results for an ir-
regular mesh such as the Stanford bunny. This is due to
the fact that the information carried by normal vectors is
very strong and has to be treated gently. Assigning the nor-
mals smaller weights as in (37b,c) yields much smoother
result. The best results are obtained in (37c), where both
w̃i, ŵi get smaller as the distance from the refined triangle
increases.

In our current setup, the weights need to be adjusted
case-by-case. One of the possible future improvements of
the QFR is to compute the weights algorithmically. The
local geometry of the mesh (vertex angles, triangle areas)
could be used for this purpose.

6.2 Influence of the normal vectors

The normal vector ~ni determines the tangent plane at the
vertex pi. To show how the change in the prescribed nor-
mals influences the limit surface, we applied the QFR on
the Stanford bunny with the alternative set of vertex nor-
mals. This alternative set of normals was generated ran-
domly from a noise function. The results are visualised
in figures 5c (original normals) and 5d (random normals).
The weights from (37c) were used in both cases. The
refined meshes differ dramatically, despite the fact the
weights for normals are much smaller comparing to the
vertex weights (order of 107).

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

(a) (b) (c) (d)

Figure 5: (a-c) The Stanford bunny with original normals, refined using the sets of weights from (37a-c). (d) The Stanford
bunny with randomly generated normals, refined using the weights from (37c). Bottom part shows the visualisation of the
discrete ABS curvature.

6.3 Comparison with linear schemes

To compare the proposed algorithm with the linear
schemes, we have used the large-scale mesh of the Venus
of Dolnı́ Věstonice. This mesh is a discretized version of
the small nude female statuette found in Moravia south of
Brno. Dated to 29,000-25,000 BCE, it is considered one
of the oldest known pieces of ceramic in the world.

The original Venus mesh (131 114 vertices) was deci-
mated with app. 99% compression rate (1 356 vertices).
The decimated mesh was refined four times using the
QFR, the

√
3-subdivision, the Modified butterfly and the

Loop scheme. For the QFR, we have used the weights
(vi,v f) = (1,0.1),(ni,n f) = (0.001,0.01). The one-sided
Hausdorff distance was used to measure the error and to
compare the refined meshes. For reference, the lengths
of the sides of the bounding box of the Venus mesh are
108.4,31.8, and 42.8 units.

2nd iteration 4th iteration
max. mean RMS max. mean RMS

QFR 1.945 0.092 0.173 1.945 0.093 0.174√
3 1.990 0.167 0.226 2.003 0.174 0.233

MB 1.846 0.083 0.163 1.839 0.084 0.164
Loop 2.001 0.170 0.230 2.003 0.175 0.234

Table 1: Performance of the QFR on the Venus mesh com-
paring to the linear schemes

The results are visualised in figure 7. The numerical
values of maximum, mean and RMS error are summarized
in table 1.

Using this setup, we are able to obtain a close approx-
imation of the original mesh. The performance of QFR
is comparable to the Modified Butterfly. This is related
to the fact that both QFR and Butterfly are interpolating
schemes. However, the mesh produced by our method is
visually smoother. The meshes generated by the approxi-
mating schemes (

√
3-subdivision, Loops) are also smooth,

but they lack the details of the mesh produced by the QFR.

6.4 Reconstruction of quadratic surfaces

In the context of our refinement method, quadratic sur-
faces or quadrics are an important tool. Our algorithm can
also be used for the reconstruction of quadratic surfaces
from a coarse, approximating mesh.

Using the weights w̃i = 1000, ŵi = 0.0001, the scheme
is capable of reconstructing a close approximation of the
sphere from the cube, see figure 6. The initial mesh (cube)
is shown after 0,1,2,3 and 9 iterations, together with the
color visualisation of the distance of the densest mesh
from the sphere. The red color corresponds to zero dis-
tance, blue color corresponds to distance ≥ 0.0025, which
is fairly small taking into account the sphere has unit ra-
dius. The output is also influenced by the initial triangula-
tion of the cube.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 6: Reconstruction of the sphere x2 + y2 + z2 = 1.

In addition to the sphere, the scheme was capable of
reconstructing a cylinder, an elliptic paraboloid and a hy-
perbolic paraboloid. These experimental results allow to
make a hypothesis that QFR actually reproduces quadratic
surfaces. In the future, we want to study this hypothesis
from the analytic point of view.

7 Conclusions

We introduce a new approach to nonlinear surface subdivi-
sion. While developing the scheme, we encountered prob-
lems with spikes, arising in some regions of the mesh and
around boundary. These issues are resolved by altering the
way the new vertex is picked from the quadric. Although
the alternative setup is more complex, it gives more accu-
rate results and is applicable on general input mesh.

In the future, we plan to study the algorithm from the an-
alytical point of view. We want to prove the limit surface
is G1-continuous and confirm the hypothesis about the re-
production of quadratic surfaces. As we have mentioned
in section 6.1, we also plan to improve the computation of
weights, which should be determined by the local geome-
try of the mesh.

Even though we assume triangular mesh, the proposed
scheme can be extended to quad mesh in a straightforward
way. To perform the extension, appropriate topological
step has to be chosen.

Acknowledgement

We would like to thank Moravian Museum∗ and EDICO
SK, Inc† for providing the mesh of Venus of Dolnı́
Věstonice we used to test our method. The bunny mesh
was kindly provided by the Stanford University Computer
Graphics Laboratory‡.

∗www.mzm.cz
†www.edico.sk
‡graphics.stanford.edu

References

[1] M. Sabin, Analysis and Design of Univariate Subdi-
vision Schemes. Springer Berlin Heidelberg, 2010.

[2] C. Loop, “Smooth subdivision surfaces based on tri-
angles,” Master’s thesis, University of Utah, August
1987.

[3] N. Dyn, D. Levin, and J. A. Gregory, “A butter-
fly subdivision scheme for surface interpolation with
tension control,” ACM Transactions on Graphics
(TOG), vol. 9, no. 2, pp. 160–169, 1990.

[4] D. Zorin, P. Schröder, and W. Sweldens, “Interpolat-
ing subdivision for meshes with arbitrary topology,”
in Proceedings of SIGGRAPH 96, Annual Confer-
ence Series, pp. 189–192, 1996.

[5] L. Kobbelt, “
√

3-subdivision,” in Proceedings
of SIGGRAPH 2000, Annual Conference Series,
pp. 103–112, 2000.

[6] T. J. Cashman, “Beyond Catmull–Clark? A survey of
advances in subdivision surface methods,” Computer
Graphics Forum, vol. 31, no. 1, pp. 42–61, 2012.

[7] J. Peters and U. Reif, Subdivision surfaces. Springer,
2008.

[8] S. Karbacher, S. Seeger, and G. Häusler, “A non-
linear subdivision scheme for triangle meshes,” in
VMV, pp. 163–170, 2000.

[9] N. Aspert, T. Ebrahimi, and P. Vandergheynst, “Non-
linear subdivision using local spherical coordinates,”
Computer Aided Geometric Design, vol. 20, no. 3,
pp. 165–187, 2003.

[10] X. Yang, “Surface interpolation of meshes by
geometric subdivision,” Computer-Aided Design,
vol. 37, no. 5, pp. 497–508, 2005.

[11] P. Chalmovianský and B. Jüttler, “A non-linear
circle-preserving subdivision scheme,” Advances in
Computational Mathematics, vol. 27, no. 4, pp. 375–
400, 2007.

[12] E. Hartmann, “On the curvature of curves and sur-
faces defined by normalforms,” Computer Aided Ge-
ometric Design, vol. 16, no. 5, pp. 355–376, 1999.

[13] M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt,
“Openmesh - a generic and efficient polygon mesh
data structure,” 2002.

[14] C. Sanderson, “Armadillo: An open source C++ lin-
ear algebra library for fast prototyping and compu-
tationally intensive experiments,” tech. rep., NICTA,
2010.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

www.mzm.cz
www.edico.sk
graphics.stanford.edu

(a) (b) (c) (d) (e)

Figure 7: Comparison of our method with the linear triangular schemes. (a) Original and decimated Venus mesh, (b-
e) decimated mesh refined with QFR,

√
3, Modified Butterfly and Loop. Top row in (b-e) shows the mesh after four

iterations of given scheme, middle row shows the visualisation of the Hausdorff distance of the original mesh from the
refined meshes. Bottom row displays the histograms of the Hausdorff distance.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)

	Introduction
	Subdivision Surfaces
	Related Work
	Refinement via Algebraic Fitting
	Topological step
	Computing position of the new vertex
	Fitting quadric to vertices
	Picking the new vertex
	Intersection of normal line and quadric
	Foot point of barycenter

	Implementation
	Results
	Choosing the weights
	Influence of the normal vectors
	Comparison with linear schemes
	Reconstruction of quadratic surfaces

	Conclusions

