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Abstract

Tibor Stanko. Refining Procedures on Mesh via Algebraic Fitting. Master’s thesis,
Comenius University, Bratislava. May 2014.

In this thesis, we introduce a nonlinear interpolating scheme for the refinement of
a triangular mesh. Each triangle is associated with a small set of neighbouring points
and normals. A low degree algebraic surface (quadric) is fitted to this set with re-
spect to the well-chosen chosen objective function. The new vertex is taken from the
computed quadric. Such a setup allows modelling with normals, hence overcoming the
limitations of linear schemes. An application of the proposed method to mesh com-
pression is shown, including certain geometric analysis of the result. If the parameters
(weights) are chosen properly, the scheme is able to reconstruct a close approximation
of a quadratic surface from a coarse input mesh.

keywords: triangular mesh, mesh refinement, nonlinear scheme, subdivision surfaces,
compression

Abstrakt

Tibor Stanko. Refining Procedures on Mesh via Algebraic Fitting. Diplomová práca,
Univerzita Komenského, Bratislava. Máj 2014.

V tejto práci je prezentovaná nelineárna interpolačná schéma na zjemňovanie trojuhol-
níkovej siete. Každý trojuholník je asociovaný s malou množinou susedných bodov a
normál. Skonštruujeme kvadratickú plochu, ktorá najlepšie aproximuje túto množinu s
ohľadom na vybranú dobre definovanú optimalizačnú funkciu. Nový vrchol je vybraný
z vypočítanej kvadriky. Týmto spôsobom vieme limitnú plochu modelovať s využitím
normál, čím prekonávame odmedzenia lineárnych schém. Výslednú metódu geometricky
analyzujeme a využívame na kompresiu trojuholníkovej siete s veľkým množstvom vr-
cholov. Pri správnej voľbe parametrov (váh) je schéma schopná zrekonštruovať blízku
aproximáciu kvadratickej plochy z dostatočne hustej vstupnej siete.

kľúčové slová: trojuholníková sieť, zjemňovanie siete, nelineárna schéma, rafinačné
plochy, kompresia
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Chapter 1

Introduction

The problem of efficient and accurate geometry modelling of solids has been present
in computer graphics from the very beginning. A new approach for boundary repre-
sentation of three-dimensional objects has emerged in the late 1970s. What became
known as subdivision surfaces is now widely used in domains such as CAGD, geometry
modelling for animation, level-of-detail modelling, multiresolution analysis.

While linear refinement methods for surface subdivision have been closely studied
in the past decades, nonlinear methods have received little attention. Linear schemes
work well in cases when the positions of vertices are known. The difficulties arise when
we try to make use of data coming from derivatives, such as tangent or curvature.
Nonlinear schemes seem to be the right mechanism to bridge this gap.

A new nonlinear refinement algorithm for surfaces is presented in this work. Our
scheme operates on triangular meshes and interpolates input data. Even though the
scheme is nonlinear, it only requires solving a well-formed system of linear equations
for each triangle of the subdivided mesh.

We begin by reviewing the common means for surface representation in chapter 2.
This chapter also introduces the definition of mesh, which is one of the central notions
of the thesis.

Chapter 3 gives a more detailed introduction to the world of subdivision surfaces.
We give a brief motivation for modelling with surfaces defined as limit, as well as the
general classification of such surfaces. The main part of this chapter consists of an
overview of linear and nonlinear methods for surface refinement.

The proposed nonlinear refinement scheme is derived in chapter 4. The algorithm is
based on fitting a quadratic surface to the local (vertex and normal) neighbourhood of
each triangle. This process corresponds to the minimization of the objective function,
which leads to the system of linear equations. To achieve the best results, the weights
are assigned to the vertices and to the normal vectors.

The implementation of our method is briefly described in chapter 5. The application
was programmed on top of the the Subdivider tool from the library OpenMesh. The

1



Chapter 1. Introduction

commented C++ source code of the application is attached to the thesis.

In chapter 6, we experiment with various sets of weights and analyse the influence
of the normal vectors on the limit surface generated by our method. We also show
how the resulting method can be used to compress triangular mesh obtained from laser
scanning. Such a mesh usually consists of large datasets, typically ∼ 105−106 vertices.
Applying our scheme on properly chosen decimation of the input mesh, we are able
to reconstruct scanned data very accurately. The proposed scheme can also be used
for the reconstruction of quadratic surfaces from a coarse approximating mesh. We
provide a demonstration by reconstructing the sphere, the hyperbolic paraboloid, the
elliptic paraboloid and the cylinder.

The thesis is concluded by chapter 7. Several ideas for the future work and im-
provements of the scheme are given.

2



Chapter 2

Surface Representations

To design dynamic and robust algorithms in computer graphics, we need to be able
to represent three-dimensional objects efficiently. Typical method for representing an
object is to specify the boundary surface of an object. Such representation is often
called boundary representation or simply B-rep.

In this chapter, we survey the basic surface representation techniques. We also
introduce important notions that will be used throughout next chapters, such as a
polygonal mesh, a boundary edge, an extraordinary vertex. For more details on the
surface representation, see also [BPK+07], [CF01] or [FHK02].

Standard definition of a surface in the context of computer graphics is that of an
orientable continuous two-dimensional manifold embedded in R3 [BPK+07]. Objects
with complicated shape are usually difficult to represent using only one function. For
that reason, the function domain is split into smaller parts, and the representation
is constructed over each sample separately. This piecewise definition allows for local
approximation of the desired surface. In terms of global representation, one needs to
ensure the overall surface is Cq continuous up to some specified degree of continuity q.

2.1 Parametric representation

A parametric surface is defined as a map of some two-dimensional parameter domain
D ⊂ R2 to three-dimensional space,

f : D → S ⊂ R3, (u, v) 7→ f (u, v) =


fx(u, v)

fy(u, v)

fz(u, v)

 ∈ S. (2.1)

This form of representation has been widely used in computer-aided geometric design
(CAGD) for various reasons. Parametric surfaces are easy to sample and visualise.
Another asset of the parametric representation is that it allows for transformation

3



Chapter 2. Surface Representations 2.1. Parametric representation

of some problems in the three-dimensional space to problems in the two-dimensional
space of the parameter domain. For instance, consider the search for the geodesic
γ-neighbourhood

Ng (p0, γ) = {p ∈ S | dg(p,p0) < γ} (2.2)

of point p0 = f(u0, v0) ∈ S, where dg(p,p0) is the geodesic distance on the surface S –
the shortest distance between the points p,p0 along the surface S. The problem of find-
ing such geodesic neighbourhood can be simplified by considering only neighbourhood
points in the parameter domain D.

2.1.1 Spline surfaces

A spline surface consists of patches, defined piecewise by control points and basis func-
tions. The control points and basis functions are chosen in a way that allows the whole
spline surface to be Cq continuous for some q ∈ N0.

Tensor-product spline surfaces are defined over the piecewise rectangular domain
D. Without the loss of generality, we assume D = [0, 1] × [0, 1] as any rectangle
R = [a, b] × [c, d] ⊂ R2 can easily be transformed to the unit square. As an example,
consider a Bézier patch of degree (m,n) ∈ N× N

b(u, v) =
m∑
i=0

n∑
j=0

Bm
i (u)Bn

j (v) pij, (2.3)

where pij ∈ R3 are the control points, Bd
k(t) =

(
d
k

)
tk (1− t)1−k is the univariate Bern-

stein polynomial of degree d. Bézier splines can be extended to rational Bézier splines
and generalized to locally supported non-uniform rational basis splines (NURBS).

Triangular spline surfaces are defined over the triangular domain T = t0t1t2 ⊂ R2.
As an example, consider a Bézier patch once again, this time triangular. Every point
(u, v) ∈ T from the domain is associated with the barycentric coordinates (α, β, γ)

with respect to the triangle T

(u, v) = α t0 + β t1 + γ t2, α + β + γ = 1. (2.4)

The triangular Bézier patch of degree n ∈ N over triangle T is defined as

b(u, v) =
∑

i+j+k=n

Bn
ijk (α, β, γ) pijk, (2.5)

where pijk ∈ R3 are the control points, Bn
ijk (α, β, γ) =

n!

i!j!k!
αiβjγk are the bivariate

Bernstein polynomials of degree n. As in the case of tensor-product splines, trian-
gular Bézier splines can be extended to rational triangular splines and generalized to
triangular B-splines. For the details on the topic, see for example [HLS93] or [Far96].

4



Chapter 2. Surface Representations 2.1. Parametric representation

Spline surfaces are widely used in traditional CAGD modelling, although they have
their disadvantages. Objects with complex topology modelled with smooth splines
require many smoothly blended patches and are difficult to construct. Moreover, it is
complicated to perform additional geometric modifications.

2.1.2 Polygonal meshes

A polygonal meshM is defined as a pair

M = (V,P) , V = {v1, . . . ,vn} , P = {P1, . . . ,Pm} , (2.6)

where V is a collection of vertices vi = (xi, yi, zi)
> ∈ R3 and P is a collection of

polygons. Each polygon Pj ∈ P is specified as an ordered list of vertices vi. The set
V is called the geometric component of the mesh M, while the set P is called the
topological component of the meshM. In case all of the polygons in P are triangles,
we refer to a triangular or a triangle mesh. Similarly, we refer to a quadrilateral mesh,
a hexagonal mesh, etc.

Another way of thinking about the topological component of the mesh M is to
consider a graph structure with a set of vertices

V = {v1, . . . , vV } , (2.7)

and a set of edges
E = {e1, . . . , eE} ⊂ V × V . (2.8)

Formally, a mesh must be a cell complex [She12], hence further conditions are placed
on E . The collapsed edges (loops) are forbidden, [vivi] 6∈ E , and the order of the end
vertices of the edge is not relevant, [vivj] = [vjvi] . Alternatively, one can specify the
mesh connectivity with a set of faces instead of a set of edges. For example, for the
triangle meshM,

F = {f1, . . . , fF} ⊂ V × V × V (2.9)

is a set of triangles ofM. Again, the set F must conform to some additional conditions.
If [vivjvk] ∈ F , then i, j, k differ, and all the permutations of [vivjvk] represent the same
triangle face. The geometric component ofM is specified by associating a position in
three-dimensional space with every vertex, thus embedding the set V in R3,

E : V 7→ R3, vi = position (vi) = (xi, yi, zi) ∈ R3. (2.10)

Such embedding also determines the embeddings of the sets E and F in R3 together
with the induced metric. When referring to sets of vertices, edges and faces of the
meshM, we use the notation V(M), E(M) and F(M).

5



Chapter 2. Surface Representations 2.1. Parametric representation

The piecewise parametric form of a triangle mesh represents each triangle T =

vivjvk ∈ F(M) as a convex combination of its vertices,

T (u, v) = uvi + v vj + (1− u− v) vk, (u, v) ∈ [0, 1]2 . (2.11)

p̃b

pi

p̂b

Figure 2.1: (Left) Example of a non-manifold mesh, in which one edge is shared by
three triangles. (Right) The neighbourhood of a vertex (or any point) in a manifold
mesh is topologically equivalent to a disc or a (piecewise) half-disc.

Every edge in 2-manifold mesh, or simply manifold mesh, is shared by exactly one
face (boundary edge) or by exactly two faces (non-boundary or interior edge). If an
arbitrary point (vertex) of the meshM is lying on some boundary edge, we refer to it
as a boundary point (vertex ). Otherwise, we refer to an interior point (vertex ). A mesh
with only non-boundary edges is closed, otherwise we refer to a mesh with boundary.

Examples of various types of vertices are shown in figure 2.1. The neighbourhood
of an interior point pi is topologically equivalent to a disk. The neighbourhood of a
boundary point pb is either topologically equivalent to a half-disk (p̂b on the figure), or,
if the neighbourhood without pb consists of more than one component, each component
is equivalent to a half-disk (p̃b on the figure).

The valence or valency of a vertex is defined as the number of edges adjacent to this
vertex. When dealing with triangular or quadrilateral meshes, two types of vertices
can be recognized. Consider the regular polygonal tessellation of the half-plane{

(x, y) ∈ R2 : y ≥ 0
}
, (2.12)

see figure 2.2. All interior (boundary) vertices in a regular tessellation have the same
valence. We call such valence the regular valence of interior (boundary) vertex in
triangular (quadrilateral) mesh. For the triangular tessellation, the regular valence
of an interior (boundary) vertex is 6 (4). In case of the quadrilateral tessellation,

6



Chapter 2. Surface Representations 2.2. Implicit representation

the regular valence of an interior (boundary) vertex is 4 (3). A regular vertex of the
(triangular or quadrilateral) meshM is a vertex, whose valence is regular. Otherwise,
a vertex is extraordinary.

Figure 2.2: Regular triangular and quadrilateral tessellations of the plane.

2.1.3 Subdivision surfaces

Subdivision is a way of representing smooth shapes in computer [Sab10]. Subdivision
surfaces can be thought of as a generalization of spline surfaces and are therefore a
parametric representation. Like spline surfaces, they are controlled by a coarse control
mesh, but unlike spline surfaces, they are able to represent arbitrary topology. The
subdivision surface S is defined as a limit of successive refinement of an initial meshM0,

S = lim
k→∞
Mk. (2.13)

More detailed description of subdivision surfaces follows in chapter 3.

2.2 Implicit representation

An implicit surface S is defined as a non-empty zero-set of scalar-valued function
F : R3 → R,

S =
{
x ∈ R3 | F (x) = 0

}
. (2.14)

Additionally, the points from the interior of the volume bounded by the surface S
satisfy F (x) < 0, while outside points satisfy F (x) > 0.

Implicit surfaces are very convenient for giving answers to spatial queries, such as
Is the point inside, outside of the bounded volume, or on the surface S? With the
surface S defined implicitly, this question simply reduces to determining the sign of
the function F . On the other hand, some of the tasks that are easily performed with a

7



Chapter 2. Surface Representations 2.2. Implicit representation

parametric representation become difficult when the surface is represented implicitly.
For instance, sampling an implicit surface or finding the geodesic neighbourhood of a
point are hard to accomplish.

8



Chapter 3

Subdivision Surfaces

Subdivision surfaces have come a long way since the first papers on subdivision mod-
elling have been published side-by-side in the same volume of the Computer-Aided
Design magazine, see [CC78], [DS78]. They now represent a powerful alternative to
the traditional means of the geometric modelling, such as B-spline surfaces. In this
chapter, we first overview the fundamentals of the subdivision modelling and the classi-
fication of subdivision schemes. We then review the principles of the linear subdivision
and the nonlinear subdivision, including the description of the most common schemes.

3.1 On subdivision and refinement

Various perspectives for seeing subdivision surfaces emerged over the past few decades.
Overview of these perspectives follows, inspired by Peters and Reif [PR08].

Smooth geometry

Subdivision surfaces can naturally be seen as a tool for modelling almost smooth (up
to extraordinary points) geometric surfaces with arbitrary topology. This simple, in-
tuitive approach determined their use in various domains of the geometric modelling,
such as the character animation [DKT98], the wavelet generation [SDRS96] or the
multiresolution analysis and editing [ZSS97].

Surface as limit

Classical approach computes subdivision surfaces as a result of schemes for recur-
sive refinement of control mesh. In early literature, subdivision was described as a
generalization of the spline knot insertion to arbitrary control mesh. Indeed, Catmull-
Clark [CC78] and Doo-Sabin [DS78] schemes can be respectively thought of as gen-
eralization of tensor product bicubic and biquadratic uniform B-splines to arbitrary
topology. In this context, the subdivision surface S can be seen as the limit of the

9
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sequence of the control meshes
S = lim

k→∞
Mk, (3.1)

where the mesh Mk+1 is obtained by applying set of refinement rules on Mk, the
meshM0 is initial.

Nested rings sequences

In [PR08], Peters and Reif emphasize another way of understanding subdivision sur-
faces. They do so in order to formally characterize and study the analytical properties
(particularly continuity) from the differential geometry point of view. They propose
two possible means of looking at the subdivision process, each of them relevant for
certain applications.

◦ The mesh refinement generates a sequence of refined control nets. Such a setup
is suitable for implementation purposes.

◦ The subdivision generates nested sequences of surface rings. It is used for studying
differential traits of the limit surface.

In this thesis, our main focus is on the mesh refinement. Study of the analytic
properties is out of scope of this work, although we plan to do it. In chapter 7, we
specify some ideas for the future work. These ideas also include the analytical approach
to the proposed method.

3.2 General classification

In practice, a subdivision scheme consists of two main steps. First, the topological
structure of the next iteration is determined (splitting or topological step). Typical
operations in this step include inserting new vertices and leaving out some of the old,
introducing new edges and faces, performing edge flip. Second, positions of old and/or
new vertices are perturbed (geometric step).

The nature of splitting step yields another possible classification into face schemes,
which split faces, and vertex schemes, splitting vertices.

Stationary schemes use the same set of subdivision rules over all refinement steps, as
opposite to nonstationary or variational schemes. Locally in terms of fixed refinement
level, a scheme is termed uniform or shift-invariant if the same rules are applied for
each computed vertex throughout refinement step. Otherwise, a scheme is adaptive or
shift-variant.

Finally, a subdivision scheme is interpolating if the limit surface interpolates the
vertices of the initial mesh. Otherwise, the scheme is approximating.

10
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3.3 Linear schemes

Generally, linear refinement scheme takes form

vk+1
i =

∑
vk
j∈V(Mk)

akijv
k
j . (3.2)

The set of vertices V
(
Mk

)
of the mesh Mk at level k is affinely mapped on the

set vertices of mesh Mk+1 using refinement coefficients akij ∈ R ,
∑
akij = 1. The

equation (3.2) can be narrowed using matrix notation to

Pk+1 = AkPk , (3.3)

where Pk is a column vector of control points vkj ∈ Mk and Ak =
{
akij
}
is a matrix

with real coefficients called subdivision matrix.

The coefficients in subdivision matrix are chosen carefully to ensure desired proper-
ties of the limit surface, such as Cq continuity for some q. The proof of the convergence
of a particular method leads to the structure of eigenvalues and eigenvectors of the
matrix Ak [PR08].

Special subdivision rules need to be applied for boundary vertices. Such boundary
rules are generally chosen in a way that ensures the limit boundary curve is a B-spline
curve. When discussing the individual schemes, we omit the definition of the boundary
rules. The details of the boundary rules can be found in [SZ00].

First subdivision schemes for surface refinement were inspired by work of Chaikin
[Cha74]. His algorithm for curve generation uses a procedure known as corner cutting,
using simple linear vertex combinations to compute vertex coordinates in the next
iteration. The limit curve produced by the Chaikin’s algorithm is in fact a piecewise
quadratic C1-continuous B-spline.

For example, consider a closed polygon P with n vertices vi = v0
i for i = 0, . . . , n−1,

such as in figure 3.1. Then the k + 1st iteration of the corner cutting algorithm yields
a refined control polygon with 2kn vertices vk+1

j , computed according to the scheme

vk+1
2i = 1

4
vki−1 + 3

4
vki , (3.4a)

vk+1
2i+1 = 3

4
vki + 1

4
vki+1, (3.4b)

for i = 0, . . . , 2kn− 1. The indices in subscripts are taken modulo n.

3.3.1 Doo-Sabin (1978)

Doo-Sabin subdivision scheme was developed by extending the Chaikin’s algorithm
to surfaces, generalizing biquadratic uniform tensor-product B-splines for arbitrary

11
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v0
3

v1
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1
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5

v1
6

v1
7

Figure 3.1: Chaikin’s scheme for curves. (Left) Control polygon and limit curve,
(middle and right) first two iterations of corner cutting algorithm.

Figure 3.2: Cube subdivided once using the Doo-Sabin scheme. V-faces are rendered
blue, E-faces are red, F-faces are green.

control net [DS78]. The limit surface is globally C1 continuous.

Topological step of the Doo-Sabin scheme uses corner cutting for surfaces. For each
vertex v incident with n faces, n new vertices are introduced and connected to form a
V-face. Each old edge e is replaced by new E-face, connecting newly inserted vertices
incident with e. Similarly, each face f is replaced by a new F-face, connecting newly
inserted vertices incident with f . For better illustration, see the first iteration of the
scheme applied on cube visualised on figure 3.2.

The position of the new vertex is computed as a weighted average of the positions
of n vertices vi from the old face (see figure 3.3)

v̂ =
n−1∑
i=0

αivi. (3.5)
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9
16

3
16

3
16

1
16

v̂

α0

α1

α2

α3

αn−1

v̂

Figure 3.3: Masks for regular (left) and extraordinary vertex v̂ (right) in the Doo-Sabin
scheme. The weights αi are computed as in equation (3.6) or (3.7).

Doo and Sabin proposed using the following weights

αi =


1

4
+

5

4n
i = 0 ,

3 + 2 cos (2π
i

n
)

4n
i = 1, . . . , n− 1 .

(3.6)

A different set of weights for this scheme was proposed by Catmull and Clark

α̂i =



1

2
+

1

4n
i = 0 ,

1

8
+

1

4n
i = 1, n− 1 ,

1

4n
i = 2, . . . , n− 2 .

(3.7)

3.3.2 Catmull-Clark (1978)

The Catmull-Clark scheme is a generalization of tensor product bicubic B-splines to
arbitrary quadrilateral mesh, see [CC78]. The produced limit surface is C2 continuous
everywhere except at the extraordinary vertices, where it is C1. An extraordinary
vertex is in this case every vertex, whose valence is not equal to 4 (or 3 for boundary
vertices).

Unlike the Doo-Sabin, the Catmull-Clark is face-splitting. Each face f with the
vertices vi, i = 0, . . . , 3, introduces a new face vertex vf , computed as a barycenter of
f

vf =
v0 + v1 + v2 + v3

4
. (3.8)
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n
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n
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n
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n

γn
n

v̂

αn

Figure 3.4: Masks in the Catmull-Clark subdivision scheme. (Top left) mask for face
vertex vf , (bottom left) mask for edge vertex ve, (top right) mask for regular vertex
v̂ with valency n = 4, (bottom right) mask for extraordinary vertex v̂ with valency
n 6= 4. Here, βn = 3

2n
, γn = 1

4n
, αn = 1− βn − γn.

Next, a new vertex ve is added for each non-boundary edge e with endpoints v0,v1

ve =
v0 + v1 + vf1 + vf2

4
, (3.9)

where f1, f2 are faces incident with e. New edges are introduced, connecting respective
incident face and edge vertices.

The last step is the perturbation of each old vertex v. Let f be the barycenter
of n face vertices, obtained from faces incident with v. Let m be the barycenter of
midpoints of n edges incident with v. The new position v̂ of the vertex v is computed
as

v̂ =
f + 2m + (n− 3)v

n
. (3.10)

The Catmull-Clark scheme is a very popular algorithm for mesh smoothing. In
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1997, the scheme was used in Pixar’s short movie Geri’s Game (figure 3.5) for character
modelling. Geri’s Game later received Academy Award for Best Animated Short Film,
marking an important milestone in short history of subdivision surfaces. For more
details, see [DKT98].

Figure 3.5: Academy Award-winning short movie Geri’s Game uses a modified version
of the Catmull-Clark subdivision scheme. Picture of Geri courtesy of [DKT98].

3.3.3 Loop (1987)

Introduced in the master’s thesis of Charles Loop [Loo87], the Loop’s subdivision
scheme generalizes quartic triangular B-splines. Operating on a triangular control
mesh, the limit surface is C2 continuous everywhere except at the extraordinary vertices
(their valence is not equal to 6), where the surface is C1.

The algorithm starts by cutting each edge e in two parts by introducing new E-
vertex ve at the midpoint of e. Each face F is split to four faces by introducing three
new edges, connecting newly inserted vertices, see figure 3.6. Such topological change
is called dyadic split and produces 1-to-4 refinement – each triangle is replaced by four
sub-triangles.

If v1, . . . ,vn are the neighbours of v (its valence is therefore n), the position v̂ of
the vertex v in the next iteration is computed using

v̂ = (1− nβ) v +
n∑
i=1

βvi . (3.11)
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Figure 3.6: Dyadic split is used in many refinement schemes and produces 1-to-4 re-
finement.

The position of the edge vertex ve is

ve =
3v + 3vj + vj−1 + vj+1

8
, (3.12)

where the endpoints of e are v and vj. The indices in subscripts are taken modulo n.
The original value of β proposed by Loop is

β =
5

8n
− 1

n

(
3

8
+

1

4
cos

2π

n

)2

. (3.13)

Warren [WW01] proposed an alternative choice of weights:

β̂(n) =


3

16
n = 3,

3

8n
n > 3.

(3.14)

β β

β β

β

β

β

1− nβ
v̂

3
8

3
8

1
8

1
8

ve

Figure 3.7: Vertex and edge masks for the Loop scheme.
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3.3.4 Butterfly (1990)

The original Butterfly subdivision scheme was proposed by Dyn, Levin and Gregory
[DLG90]. Designed for triangular meshes, the scheme is interpolating with the limit
surface being C1 continuous everywhere except at the extraordinary vertices of valence
k = 3 and k > 7. Zorin et al. [ZSS96] modified the scheme to be C1 continuous for an
arbitrary mesh.

Topological step in the Butterfly scheme is the same as in the Loop’s scheme. The
difference between them lies in averaging step. Unlike Loop, Butterfly scheme is in-
terpolating. Therefore, the positions of old vertices remain unchanged. For computing
the position of new edge vertex ve, the scheme uses eight-point rule, which gave the
scheme its name. The rule’s mask has a shape of butterfly, see figure 3.8.

ve

v1

v2

v3 v4

v5 v6

v7 v8

w0

w1

w2

w3 w4

wk−1

ve

v̂

Figure 3.8: Masks for the an edge vertex ve in the Butterfly scheme. (Left) original
mask, (right) modified mask for an edge adjacent to an extraordinary vertex v̂ whose
valency is k. Weights wi for the modified mask are specified in equation (3.17).

Using the notation from figure 3.8, position of edge vertex ve is

ve = 1
2
(v1 + v2) + 2ω(v3 + v4)− ω(v5 + v6 + v7 + v8). (3.15)

The parameter w in (3.15) controls the tension of the limit surface. The more ω
approaches 0, the more is limit surface tightened toward piecewise linear spline surface.
Dyn et al. suggest ω = 1

16
.

To achieve the local tension control, each original control vertex v0
i can be assigned

its weight parameter ω0
i = ω(v0

i ). Weights for newly inserted vertices are obtained
using linear interpolation between weights of the edge midpoints. More flexibility in
the tension control is possible by replacing the scalar ω with 3×3 matrix Ω and writing
eight-point rule as

ve = 1
2
(v1 + v2) + Ωs (3.16)
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Figure 3.9: Four iterations of the splitting step of the
√

3-subdivision scheme, per-
formed on an interior triangle.

with s = 2(v3 + v4) − (v5 + v6 + v7 + v8). This allows for the local control of the
direction and the magnitude of the tension.

A modification in [ZSS96] solves the tangent plane continuity near extraordinary
vertices using the edge mask similar to the one applied in Loop’s scheme (see figure 3.8),
with the weights

k = 3 : w0 = 5
12
, w1 = w2 = − 1

12
,

k = 4 : w0 = 3
8
, w2 = −1

8
, w1 = w3 = 0,

k ≥ 5 : wi = 1
n

(
1
4

+ cos 2πi
n

+ 1
2

cos 4πi
n

)
.

(3.17)

3.3.5
√

3-subdivision (2000)

The
√

3-subdivision scheme was developed by Kobbelt [Kob00]. This triangular scheme
is approximating, C2 continuous at the regular vertices (their valence is equal to 6) and
C1 continuous at the extraordinary vertices.

The splitting step of the scheme differs from the one used in the Loop’s scheme.
Kobbelt introduced a novel method for altering the triangular topology. First, a new
vertex is introduced per triangle face and connected to all vertices of the triangle.
Second, the old edges are flipped, see figure 3.9 and also figure 4.1.

The position of the newly introduced vertex vT in triangle T = vivjvk is simply
computed as the center of gravity of triangle T

vT =
1

3
(vi + vj + vk) . (3.18)

The relaxation of the old vertex v is performed similarly to the Loop’s scheme. If the
valency of the old vertex v is n and its neighbours are vi, i = 1, . . . , n, then the new
position of v is computed as

v̂ = (1− αn) v +
αn
n

n∑
i=1

vi, αn =
4− 2 cos

(
2π
n

)
9

. (3.19)

Such choice of the parameter αn yields the desired properties of the scheme. Figure 3.10
shows both masks of the

√
3-subdivision.
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1
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1

3

vT

αn

n

αn

n

αn

n

αn

n

αn

n

1− αn

v̂

Figure 3.10: The vertex masks in the
√

3-subdivision scheme. The face vertex vT is
obtained by simply computing the barycenter of the triangle T . The new position v̂ of
the old vertex v is computed by blending the positions of the neighbours of v.

Before the
√

3-subdivision scheme was developed, the majority of the triangular
subdivision schemes used dyadic split, see figure 3.6. The generalization of such refine-
ment is n-adic split. Each edge is cut into n parts, while each triangle is cut into n2

sub-triangles. However, the larger the constant n gets, the more subdivision rules are
needed, e.g. for n = 3, we need four subdivision rules. This is the main reason why
most triangular schemes use n = 2. Two consecutive applications of the

√
3-refinement

(figure 3.11) produce 1-to-9 or triadic refinement of the original mesh, hence the square
root in the name.

Figure 3.11: After two iterations, the splitting step of the
√

3-subdivision scheme
produces 1-to-9 refinement (triadic split) of each triangle.

3.4 Nonlinear schemes

For the linear schemes – both approximating and interpolating – the positions of the
new vertices are computed as the linear combinations of the vertices from the previous
iteration. Consequently, vertices in arbitrary iterationMj (particularly the limit sur-
face S =M∞) can be expressed as the linear combinations of the initial meshM0 in
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a natural way. For the nonlinear schemes, this condition does not hold true.

The theory of the nonlinear schemes is much more difficult to handle, compared to
the linear case. Here, we present a brief summary of existing nonlinear schemes for
surface refinement.

The surface algorithm presented in this thesis was inspired by the nonlinear circle-
preserving curve refinement algorithm, proposed by Chalmovianský and Jüttler [CJ07].

3.4.1 Circular arcs (2000)

Karbacher et al. [KSH00] introduced nonlinear interpolating algorithm for refinement
of triangular mesh. They assume the input mesh is a dense approximation of some
smooth surface, e.g. a mesh reconstructed from the range images. Such mesh can be
locally approximated by circular arcs using the vertex positions and the vertex normals.

Figure 3.12: The nonlinear surface refinement method of [KSH00] uses the blending of
circular arcs to obtain the local approximation of the mesh. The positions of the edge
vertices are then computed by elevating the edge midpoints on S. Picture courtesy
of [KSH00].

The splitting step is identical to the Loop’s linear scheme, see section 3.3.3. To
obtain the positions of the edge vertices in the triangle T = v1v2v3, the surface S,
defined over the triangular domain T is first constructed.

Fix the point p ∈ T . Such point can be expressed using the barycentric coordinates
(with respect to T ) as

p =
3∑
i=1

bivi, bi ≥ 0,
3∑
i=1

bi = 1. (3.20)

The normal ~η at p is then defined as

~η =

∑3
i=1 bi~ni∥∥∑3
i=1 bi~ni

∥∥ , (3.21)

where the vector ~ni is the normal at the vertex vi.
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Denote the distance vector ~di = p − vi and its length di =
∥∥∥~di∥∥∥. The pair p, ~η

determines the line L, passing through p in the direction of η. The line L and each
normal ~ni define the circular arc ai. Denote the angle between the normal vectors ~η
and ~ni as αi, the angle between ~η and the distance vector ~di as βi, see figure 3.12.

For each arc ai, we define the point p̃ = p + δiη, where

δi = ‖p− p̃‖ ≈ di
cos
(
βi − 1

2
αi
)

cos
(

1
2
αi
) (3.22)

The surface S is defined as a set of points

3∑
i=1

bi (vi + δi(b) ~η(b)) (3.23)

for all possible parameter values b = (b1, b2, b3) , bi ≥ 0,
∑3

i=1 bi = 1.

The position of the newly inserted edge vertex is computed by orthogonally pro-
jecting the corresponding edge midpoint on the surface S, see figure 3.12. Such scheme
does not produce G1 continuous surface. [KSH00] suggests the G1 continuity can be
enforced by smoothing the final surface. Such transition does not come for free, as the
smooth limit surface no longer interpolates the input data.

3.4.2 Local spherical coordinates (2003)

Aspert et al. [AEV03] introduced the interpolating refinement scheme, which uses local
spherical coordinates to obtain the subdivided mesh. They present an algorithm for
univariate data, which is then used to derive an algorithm for triangular meshes.

Once again, the splitting step is the same as in the Loop’s scheme (section 3.3.3).
To obtain the positions of the newly introduced edge vertices, a local coordinate system
is constructed at each vertex vi, defined by the tangent plane at vi and the normal
vector at vi, see figure 3.13. The local spherical coordinate system at the vertex vi is
denoted Rvi

.

The vector ~vi,k from the vi into its neighbouring vertex vk is constructed and
normalized to obtain the vector ~wi,k. The spherical coordinates of ~wi,k in Rvi

are
defined by the angles θi,k and φi,k, see figure 3.13. Similarly, the coordinates of ~vi,k in
Rvi

are (ri,k, θi,k, φi,k), where ri,k = ‖~vi,k‖ is the length of edge connecting vi and vk.
Define the vectors

~ai,k =
(ri,k

2
, h (θi,k) , φi,k

)
, (3.24a)

~bk,i =
(ri,k

2
, h (θk,i) , φk,i

)
, (3.24b)
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θi,k

φi,k

vi

~wi,k

vk

~uvi

~tvi

~nvi

Figure 3.13: The local coordinate system around vertex vi is defined by orthonormal
basis of tangent plane at vi (vectors ~tvi

and ~uvi
) and the unit normal vector at vi

(vector ~nvi
). All dash-dotted lines in the figure belong to the same plane. Picture

courtesy of [AEV03].

where h is a function, defined as

h (α) =



α, if − π < α ≤ −π
2
,

− 1
π

(
α + π

4

)2 [24
π

(
α + π

4

)
+ 10

]
+ α

2
, if − π

2
< α < −π

4
,

α
2
, if − π

4
≤ α ≤ π

4
,

1
π

(
α− π

4

)2 [−24
π

(
α− π

4

)
+ 10

]
+ α

2
, if π

4
< α ≤ π

2
,

α, if π
2
≤ α < π.

(3.25)

Then there exist unique points ai,k,bk,i, such that ai,k = vi +~ai,k and bk,i = vk + ~bk,i.
If we denote by ve the edge vertex introduced between vi and vk, then its position is
computed as

ve =
ai,k + bk,i

2
. (3.26)

3.4.3 Face/Normal based subdivision (2005)

Yang proposed two nonlinear surface refinement algorithms in [Yan05], face based
scheme and normal based scheme. The latter is shown to be G1 continuous. Both
methods are interpolating and use dyadic split in the topological step.

Consider the edge vertex q = (x, y, z) introduced on the edge with endpoints p1 =

(x1, y1, z1),p2 = (x2, y2, z2). Denote p3, . . . ,pl the neighbouring vertices of p1 and p2,
denote T0, . . . , Tl−1 the triangles adjacent to p1 or p2. Denote πi the plane where the
triangle Ti is lying, see figure 3.14.

In the face based scheme, the new vertex q is calculated by minimizing the objective
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function

F (q) =
l−1∑
i=0

αi (~aiq)2 +
2∑
i=1

βj (q− pj)
2 , (3.27)

where ~aiq = aix+ biy + ciz + d is the distance of q from the plane πi, i = 0, . . . , l − 1,
q− pj is the distance of q from pj, j = 1, 2, the scalars αi, βj are weights.

Figure 3.14: The neighbourhood of the edge p1p2 is used for computation of edge
vertex q. Picture courtesy of [Yan05].

The objective function F is quadratic in q and equation (3.27) can be rewritten as

F (q) = q>
(

l−1∑
i=0

αi~a
>
i ~ai

)
q + q> (β1Q1 + β2Q2) q = q>Qq, (3.28)

where Q =
∑l−1

i=0 αi~a
>
i ~ai + β1Q1 + β2Q2 and

Q1 =


1 0 0 −x1

0 1 0 −y1

0 0 1 −z1

−x1 −y1 −z1 x2
1 + y2

1 + z2
1

 ,Q2 =


1 0 0 −x2

0 1 0 −y2

0 0 1 −z2

−x2 −y2 −z2 x2
2 + y2

2 + z2
2

 .

The matrix Q = {qij} is obtained as a sum of symmetric matrices and is therefore
symmetric. The solution of minimizing (3.28) is

xy
z

 =

q11 q12 q13

q12 q22 q23

q13 q23 q33


−1

−q14

−q24

−q34

 . (3.29)

The weights αi are chosen proportionally to the area of Ti and anti-proportionally to
the approximation of the angle between the plane πi and the tangent plane at q.

In the normal based scheme, the position of the new edge vertex q is computed using
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the data coming from the estimations of normal vectors. Suppose Tj, j = 0, . . . ,mi− 1

are all triangles adjacent to vertex vi with the normal vectors ηj. The normal vector
at vertex vi is estimated as

~ni =

∑mi−1
j=0 φj~ηj∥∥∥∑mi−1
j=0 φj~ηj

∥∥∥ . (3.30)

The edge vertex q corresponding to the edge e = vivj is computed as a midpoint of e,
displaced by a linear combination of normal vectors at the endpoints of e,

q =
vi + vj

2
+ w (dij~ηi + dji~ηj) , (3.31)

where the scalar w is a parameter and dij is computed as

dij =
1

2
(vi − vj) ηi. (3.32)

[Yan05] shows the normal based scheme converges to G1 limit surface if the initial mesh
meets the specified criteria and the parameter w is well-chosen. For fast convergence
and smooth limit surface, the choice of w between 0.2 and 0.4 is appropriate.

To further enhance the fairness of the limit surface, [Yan05] describes the improve-
ment to the normal based scheme under tangent plane constraint. An objective function
similar to (3.27) is minimized to obtain the position of the desired vertex.
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Chapter 4

Refinement via Quadric Fitting

In this chapter, the new approach to nonlinear subdivision of surfaces is introduced.
The basic idea of the proposed method is to look for the new points on a quadric
surface, which is the best local approximation of the mesh with respect to well chosen
objective function. In the text, we talk about quadric fitting refinement or simply QFR
when referencing our method.

Given the mesh Mk with the vertices pki and the associated normal vectors ~nki ,
i = 1, . . . , Nk, we want to refineMk to obtain a denser meshMk+1 with the vertices
pk+1
i and the normal vectors ~nk+1

i , i = 1, . . . , Nk+1. The refinement is performed locally,
i.e. the positions of the new vertices are computed with respect to the local geometry
of the mesh Mk. The search for the new vertex is based on the minimization of the
objective function.

4.1 Topological step

The topological step of our method is identical to the splitting step used in Kobbelt’s√
3-subdivision scheme [Kob00]. For the sake of conciseness and clarity, we shall refer

to the
√

3-refinement instead of the splitting step of the
√

3-subdivision scheme. For
more details on the

√
3-subdivision scheme, see section 3.3.5.

Without the flipping of old edges, the valency of each vertex would increase with
each refinement step. The flipping ensures the valency of the old vertices remains
unchanged, while the new vertices are always regular, which means their valency is
equal to 6. The only extraordinary vertices inMk (those with valency other than 6)
are the extraordinary vertices ofM0. Figure 4.1 shows the

√
3-refinement on a regular

grid for better illustration.

The interpolation requirement ensures we only need to compute the position of
a single vertex for each triangle in the geometric step. The choice of

√
3-refinement

seems natural, although our initial idea was to simply subdivide each triangle at center
without flipping the old edges. For reasons stated earlier in this section, we ran into
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(a) (b) (c) (d)

Figure 4.1: Splitting step of Kobbelt’s
√

3-subdivision or
√

3-refinement used in our
scheme. The topology of initial mesh (a) is altered by introducing new vertex (b) and
three new edges per triangle, splitting it in four (c). Finally, old edges are flipped (d).

problems with increasing valency. This led us to the Kobbelt’s method, which proved
to be effective for our case.

4.2 Computing position of the new vertex

Suppose we want to subdivide the mesh M. Let V (M) be the set of all vertices of
M. We are looking for the position of the new vertex v introduced in the triangle
T = v0v1v2. The set NT of vertices is called an m−neighbourhood of T if

NT := {p ∈ V (M) : DT (p) ≤ m} (4.1)

for some m ∈ N, where
DT (p) := min

ṽ∈V(T)
(D (p, ṽ)) (4.2)

is relative distance of vertex p from triangle T and D is a graph distance onM

D (a,b) := number of edges in the shortest path connecting a and b. (4.3)

We choose m to be the smallest natural number, for which |NT| ≥ 9. Typically, this
yields m = 1 or m = 2. The choice of 9 as minimal number is justified later in the text
(in section 4.3). An example of 1-neighbourhood is shown on figure 4.2.

The vertex v is picked out of the quadric surface

Q :=
{

(x, y, z) ∈ E3 : f (x, y, z) = 0
}
, (4.4)

where

f (x, y, z) = a11x
2 + a22y

2 + a33z
2 + 2 (a12xy + a13xz + a23yz) +

+ 2 (a14x+ a24y + a34z) + a44

(4.5)

is an unknown trivariate polynomial with real coefficients. Using matrix notation, the
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Figure 4.2: Visualisation of the set NT (1-neighbourhood) for triangle T on a regular
grid.

equation (4.5) can be written down as

f (x) = x̃>A x̃, (4.6)

where

x̃ :=


x

y

z

1

 , A :=


a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44

 , (4.7)

x̃ stands for homogenous coordinates of x ∈ E3, A denotes the symmetric matrix of
coefficients aij from the equation (4.5).

4.3 Fitting a quadric to vertices

We look for such a quadric Q that is the best approximation of mesh M in a close
neighbourhood of triangle T . For this purpose, we use the set NT defined in (4.1).
In order to specify Q, exactly 10 unknown coefficients {aij, 1 ≤ i ≤ j ≤ 4} need to be
computed up to a non-zero multiple. This clarifies the required condition on cardinality
of NT.

To improve the reading comprehension of this section, we use the following notation
for gradient operators:

∇a f =

(
∂f

∂a11

∂f

∂a22

∂f

∂a33

∂f

∂a12

∂f

∂a13

∂f

∂a23

∂f

∂a14

∂f

∂a24

∂f

∂a34

∂f

∂a44

)
(4.8)

denotes the gradient with respect to variables a11, . . . , a44, while

∇x f =

(
∂f

∂x

∂f

∂y

∂f

∂z

)
(4.9)

is the gradient with respect to x, y, z.
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Now, suppose NT = {pi , i = 1, . . . , n}, where pi = (xi, yi, zi). Ideally, Q interpo-
lates NT, meaning f vanishes in every point from NT. In general case though, such an
interpolation condition cannot be guaranteed. Instead, we compute the vector

~a :=
(
a11 a22 a33 a12 a13 a23 a14 a24 a34 a44

)>
(4.10)

of unknown parameters such that the objective function

F (a11, . . . , a44) =
n∑
i=1

w̃i f
2 (pi) + ŵi ‖∇x f (pi)− ~ni‖2 (4.11)

is minimized
~amin = arg min

a11,...,a44

F (a11, . . . , a44) . (4.12)

The objective function is quadratic with respect to ~a. In (4.11), the vector ~ni =

(x̂i, ŷi, ẑi)
> denotes the normal vector ofM at vertex pi, while w̃i, ŵi > 0 are associated

real weights. We specify the weights used for testing in chapter 6.

Necessary conditions for minima of function F from equation (4.11) give

∇a F (~a) = ~0, (4.13)

a system of linear equations

∂ F

∂aij
(a11, . . . , a44) = 0, 1 ≤ i ≤ j ≤ 4. (4.14)

If we denote

F̃ (~a) =
n∑
i=1

w̃i f
2 (pi) , (4.15)

F̂ (~a) =
n∑
i=1

ŵi ‖∇x f (pi)− ~ni‖2 , (4.16)

then F = F̃ + F̂. Therefore,
∇a F = ∇a F̃ +∇a F̂ . (4.17)

Every vertex pi contributes to the objective function in two parts. The function F̃

measures the distance of pi to the quadric Q, weighted by w̃i. The function F̂ measures
the deviation of the computed normal from the prescribed normal (at pi), weighted by
ŵi.

Let us have a look at the first term on the right side of (4.17). Taking aij as
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variables, denote φi := φ(pi), where

φ(pi) := (∇a f) (pi) =
(
xi

2 yi
2 zi

2 2xiyi 2xizi 2yizi 2xi 2yi 2zi 1
)>

.

(4.18)
Using equation (4.18) and the fact that f (pi) = φ>i ~a, we get

∇a F̃ =
n∑
i=1

w̃i 2 (∇a f) (pi) f (pi) = 2
n∑
i=1

w̃i φi φ
>
i ~a = 2

n∑
i=1

w̃i Φi ~a = 2 Φ ~a. (4.19)

Here we used the notation Φi := φiφ
>
i and Φ :=

∑n
i=1 w̃i Φi for corresponding matrices,

Φi =



x4 x2y2 x2z2 2x3y 2x3z 2x2yz 2x3 2x2y 2x2z x2

x2y2 y4 y2z2 2xy3 2xy2z 2y3z 2xy2 2y3 2y2z y2

x2z2 y2z2 z4 2xyz2 2xz3 2yz3 2xz2 2yz2 2z3 z2

2x3y 2xy3 2xyz2 4x2y2 4x2yz 4xy2z 4x2y 4xy2 4xyz 2xy

2x3z 2xy2z 2xz3 4x2yz 4x2z2 4xyz2 4x2z 4xyz 4xz2 2xz

2x2yz 2y3z 2yz3 4xy2z 4xyz2 4y2z2 4xyz 4y2z 4yz2 2yz

2x3 2xy2 2xz2 4x2y 4x2z 4xyz 4x2 4xy 4xz 2x

2x2y 2y3 2yz2 4xy2 4xyz 4y2z 4xy 4y2 4yz 2y

2x2z 2y2z 2z3 4xyz 4xz2 4yz2 4xz 4yz 4z2 2z

x2 y2 z2 2xy 2xz 2yz 2x 2y 2z 1



.

(4.20)

We will now analyze the second term on the right side of (4.17). First, the gradient
of f with respect to x, y, z is computed

∇x f (pi) = 2


a11xi + a12yi + a13zi + a14

a12xi + a22yi + a23zi + a24

a13xi + a23yi + a33zi + a34

 =:


αi

βi

γi

 , (4.21)

where αi, βi, γi are dependent on ~a. Recall the coordinates of normal ~ni at the vertex
pi are (x̂i, ŷi, ẑi). Consequently,

‖∇x f (pi)− ~ni‖2 = (αi − x̂i)2 + (βi − ŷi)2 + (γi − ẑi)2

= [ 2 (a11xi + a12yi + a13zi + a14)− x̂i ]2 +

+ [ 2 (a12xi + a22yi + a23zi + a24)− ŷi ]2 +

+ [ 2 (a13xi + a23yi + a33zi + a34)− ẑi ]2 .

(4.22)
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Applying the gradient operator ∇a on (4.22), we have

∇a
(
‖∇x f (pi)− ~ni‖2) = ∇a

(
(αi − x̂i)2 + (βi − ŷi)2 + (γi − ẑi)2) =

= 2 (αi − x̂i)∇a αi + 2 (βi − ŷi)∇a βi + 2 (γi − ẑi)∇a γi.
(4.23)

Note that applying ∇a on αi, βi and γi, we get the vectors

∇a αi = 2
(
xi 0 0 yi zi 0 1 0 0 0

)>
,

∇a βi = 2
(

0 yi 0 xi 0 zi 0 1 0 0
)>

,

∇a γi = 2
(

0 0 zi 0 xi yi 0 0 1 0
)>

.

(4.24)

Each of these vectors has only four non-zero coordinates. Plugging (4.24) into (4.23)
and substituting into (4.16) yields

∇a F̂ (~a) =
n∑
i=1

4 ŵi



xi (αi − x̂i)
yi (βi − ŷi)
zi (γi − ẑi)

(αi − x̂i) yi + (βi − ŷi)xi
(αi − x̂i) zi + (γi − ẑi)xi
(βi − ŷi) zi + (γi − ẑi) yi

αi − x̂i
βi − ŷi
γi − ẑi

0



= 4
n∑
i=1

ŵi (2 Ψi ~a− Ωi) , (4.25)

where

Ψi :=



x2
i 0 0 xi yi xi zi 0 xi 0 0 0

0 y2
i 0 xi yi 0 yi zi 0 yi 0 0

0 0 z2
i 0 xi zi yi zi 0 0 zi 0

xi yi xi yi 0 x2
i + y2

i yi zi xi zi yi xi 0 0

xi zi 0 xi zi yi zi x2
i + z2

i xi yi zi 0 xi 0

0 yi zi yi zi xi zi xi yi y2
i + z2

i 0 zi yi 0

xi 0 0 yi zi 0 1 0 0 0

0 yi 0 xi 0 zi 0 1 0 0

0 0 zi 0 xi yi 0 0 1 0

0 0 0 0 0 0 0 0 0 0



(4.26)
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and

Ωi :=
(
xix̂i yiŷi ziẑi xiŷi + yix̂i xiẑi + zix̂i yiẑi + ziŷi x̂i ŷi ẑi 0

)>
. (4.27)

Introducing the notation

Ψ :=
n∑
i=1

ŵi Ψi, Ω :=
n∑
i=1

ŵi Ωi, (4.28)

equation (4.25) becomes
∇a F̂ (~a) = 8Ψ ~a− 4 Ω. (4.29)

Using the equations (4.13), (4.19) and (4.29), we obtain the desired system of linear
equations in matrix form

0 = ∇a F (~a) = 2 Φ ~a+ 8Ψ ~a− 4 Ω = (2Φ + 8Ψ)~a− 4 Ω = Γ~a− 4Ω (4.30)

with its explicit solution
~amin = 4 Γ−1 Ω, (4.31)

provided Γ = 2Φ + 8Ψ is an invertible matrix.

The conditions of invertibility of matrix Γ are not clear yet. In our experiments,
the problems arise in linear case, that is when all vertices pi ∈ NT lie in a plane. We
plan to find a more exact description of such cases.

4.4 Picking the new vertex

After the quadricQ has been found by solving the system (4.30), we are able to compute
the coordinates of the new vertex v. Denote

bT :=
v0 + v1 + v2

3
(4.32)

to be the barycenter of the triangle T . Now we introduce two methods for picking the
new vertex. Both methods are visualised on figure 4.3.

4.4.1 Intersection of normal line and quadric

Our first approach is to find the position of v as the intersection of quadric Q and the
normal line n̄ of T , defined parametrically as

n̄ ≡ bT + t~nT , t ∈ R, (4.33)
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T

Q

n̄
p̄

vT

vQ

~nT

~nvQ

bT·

·

Figure 4.3: Schematic comparison of the two approaches for picking the new vertex,
associated with triangle T from the quadric Q. The technique described in section
4.4.1 yields vT , while the technique from 4.4.2 yields vQ.

where ~nT is the normal vector of triangle T . The vector ~nT is defined as the unit
normal of the plane determined by the vertices of T (up to signum), see figure 4.3.
Denote the intersection of Q and n̄, if it exists, as

vT = bT + t0 ~nT , (4.34)

or, coordinate-wise, 
xv

yv

zv

 =


xb

yb

zb

+ t0


xn

yn

zn

 (4.35)

for some t0. Plugging (4.34) into (4.4), (4.5), we get

a11x
2
v + a22y

2
v + · · ·+ a34zv + a44 = 0 , (4.36)
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which leads to the quadratic equation in t0 of the form

At20 + 2Bt0 + C = 0 , (4.37)

where the coefficients A,B,C ∈ R are

A = xn (a11xn + a12yn + a13zn) +

yn (a12xn + a22yn + a23zn) +

zn (a13xn + a23yn + a33zn) ,

(4.38)

B = xn (a11xb + a12yb + a13zb + a14) +

yn (a12xb + a22yb + a23zb + a24) +

zn (a13xb + a23yb + a33zb + a34) ,

(4.39)

C = xb (a11xb + a12yb + a13zb + a14) +

yb (a12xb + a22yb + a23zb + a24) +

zb (a13xb + a23yb + a33zb + a34) + a44

= f (xb, yb, zb) .

(4.40)

The roots of the quadratic equation (4.37) are

t1,2 =
−B ±

√
B2 − 4AC

2A
(4.41)

and the parameter t0 is chosen as

t0 =


0, if B2 − 4AC < 0 ;

t1, if |t1| < |t2| ;
t2, otherwise.

(4.42)

If the parameters t1, t2 are real, they determine two points on n̄. We pick the point
which is closer to bT . If t1, t2 are complex and the intersection point does not exist,
the barycenter bT is picked as the new point.

4.4.2 Foot point of barycenter

Although the procedure described in section 4.4.1 is easy to implement, it does not
generate optimal choice of the new vertex. In some cases, the intersection of Q and
n̄ does not exist or it is relatively distant from the mesh. The distant vertices create
unwanted local sharp spikes. Moreover, if the initial mesh is not closed, the spikes
occur around the boundary.

These issues are resolved by picking the new vertex as a foot point of perpendicular
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line p̄ from bT onto Q, see figure 4.3. To find the foot point numerically, we use
algorithm 4.2 taken from [Har99, section 5.1.2], which is a proper adaptation of the
Newton’s method.

The input of the algorithm is the function f , defining implicit surface S ≡ f (x) = 0,
along with some point p in the vicinity of S. Procedure FootPoint iteratively finds
the foot point of p on S. In our case,

vQ = FootPoint (bT ) . (4.43)

procedure SurfacePoint(p)
q0 = p ;
do

qi+1 = qi −
f (qi)

‖∇f (qi)‖2 f (qi)

while ‖qi+1 − qi‖ > ε;
return qi+1;

Algorithm 4.1: Procedure for calculating the surface point

procedure FootPoint(p)
p0 = SurfacePoint(p);
do

qi = p− (p− pi) · ∇f (pi)

‖∇f (pi)‖2 ∇f (pi);

pi+1 = SurfacePoint(qi);
f1 := qi − pi; f2 := pi+1 − qi;
if ‖qi − pi‖ > ε then

a0 := (p− pi) · f1;
a1 := 2f2 · (p− pi)− ‖f1‖2;
a2 := −3f1 · f2;
a3 := −‖f2‖2;

α := 1− a0 + a1 + a2 + a3

a1 + 2a2 + 3a3

;

if 0 < α < αmax then
qi = pi + αf1 + α2f2;
pi+1 = SurfacePoint(qi);

while ‖pi+1 − pi‖ > ε;
return pi+1;

Algorithm 4.2: Foot point algorithm for implicit surface f (x) = 0 from [Har99]. Pro-
cedure SurfacePoint is defined in algorithm 4.1.
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∇x f (v)

‖∇x f (v)‖ Q

T

~n

bT

v

Figure 4.4: Choosing the normal vector ~n at the newly introduced vertex v.

4.5 Choosing the normal vector

The last step of our algorithm is the choice of the normal vector ~n at newly inserted
vertex v. This is done by computing the normal vector of the quadric Q at v as a
normalized gradient of f and adding the correction term (v − bT ),

~n =
∇x f (v)

‖∇x f (v)‖ + (v − bT ) . (4.44)

We then check if the angle between ~n and the face normal ~nT of T is less than or equal
to 90 degrees. If the opposite is true, meaning

~n · ~nT < 0, (4.45)

the normal vector at v is taken as the opposite of ~n.

The resulting vector does not need to be normalized as our algorithm does not
require unit vectors. Our implementation allows the user to specify whether he requires
the normalization. The two approaches produce different results in general. In our
tests, we have used strictly normalized vectors.
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4.6 Computing the weights

In our current setup, the weights w̃i, ŵi in the objective function (4.11) need to be
adjusted case-by-case. One of the possible future improvements of the QFR is to
compute the weights algorithmically. The local geometry of the mesh (vertex angles,
triangle areas) could be used for this purpose.
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Implementation

The implementation of our method was done in C++ and compiled under GCC 4.8.1.
Both techniques for picking the new vertex from the quadric were implemented. All of
the results in chapter 6 were obtained using the foot point algorithm exclusively, see
section 4.4.2 and algorithm 4.2.

5.1 OpenMesh

For the mesh manipulation, we have decided to use an open-source C++ library Open-
Mesh [BSBK02]. OpenMesh is developed by the working group of Leif Kobbelt at
RWTH Aachen University. We chose OpenMesh for several reasons.

First, OpenMesh represents a mesh via the halfedge data structure, also known
as the doubly connected edge list. DCEL allows fast performance of mesh operations,
such as iterating over all faces, iterating over all neighbours of a vertex, splitting a
face, flipping an edge. These operations are also implemented in OpenMesh and can
be performed by simply calling the corresponding function, see code excerpt 5.1.

Mesh mesh;
Mesh::VertexHandle vertex;
Mesh::EdgeHandle edge;
Mesh::FaceHandle face;

mesh.split( face, vertex );
mesh.flip( edge );

Code Excerpt 5.1: With OpenMesh, it is fairly easy to split the face at the given
vertex, or just flip the selected edge.

Second, the OpenMesh library includes the application Subdivider, with built-in
framework for subdivision surfaces. By overloading abstract base class SubdividerT,
Subdivider implements various linear subdivision schemes such as the Loop scheme,
the
√

3-subdivision and the Modified Butterfly.
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The existence of subdivision framework in Subdivider facilitated the implemen-
tation of the quadric fitting refinement greatly. At the same time, the framework
provided full control over the implementation with no limitations. The functionality
of Subdivider consists of four basic operations:

1. Load a mesh from the file.

2. Refine the mesh using the selected refinement scheme.

3. Save the mesh to a file.

4. Reset the refined mesh into its initial state.

Loading and saving of the mesh supports various popular mesh data formats, such as
Wavefront OBJ (.obj), Stanford Polygon File Format (.ply) and Object File Format
(.off). This functionality is handled by the OpenMesh::IO namespace.

Figure 5.1: The Utah teapot in the application Subdivider, with the implementation of
quadric fitting refinement.

The graphical user interface in Subdivider is provided by the Qt library, meshes are
rendered using the OpenGL Utility Toolkit (GLUT), see figure 5.1. The four functions
mentioned above are displayed as four buttons, the refinement methods are displayed
as radio buttons.
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When refining with QFR, the user can specify the weights w̃i, ŵi to be used in the
minimization of the objective function, see equations (4.11), (4.19) and (4.25). The
input of weights is implemented as a set of input text fields. The input is constrained to
meet the specified numerical pattern. This validation prevents the application crashes,
resulting from the input of malformed weights.

OpenMesh provides the set of iterators and circulators to simplify the navigation
around the mesh. The iterators allow iterating over all faces, edges, halfedges and ver-
tices of the mesh. The circulators are designed for enumerating the elements adjacent to
the so-called central element. For instance, they provide means for enumerating all ver-
tices adjacent to the face F , all faces adjacent to the face F , all faces adjacent to vertex
V and so on. Iterators and circulators are implemented in the OpenMesh::Iterators
namespace and the OpenMesh::PolyConnectivity class. Example of their use for
getting the vertices in the face neighbourhood is shown in the code excerpt 5.2.

Mesh mesh;
Mesh::FaceHandle face;
std::set< Mesh::VertexHandle > face_neighbours;
std::set< Mesh::VertexHandle >::iterator v_it;

// first, insert the face vertices into the set of neighbours
Mesh::FaceVertexIter fv_it = mesh.fv_iter( face );
for( fv_it; fv_it.is_valid(); ++fv_it )

face_neighbours->insert( *fv_it );

// loop until the set of neighbours is large enough
while( face_neighbours->size() < 9 ) {

v_it = face_neighbours->begin();
for( v_it; v_it != face_neighbours->end(); ++v_it ) {

Mesh::VertexVertexIter vv_it = mesh.vv_iter( *v_it );
for ( vv_it; vv_it.is_valid(); ++vv_it )

face_neighbours->insert( *vv_it );
}}

Code Excerpt 5.2: Computing the set of face neighbourhood using iterators in
OpenMesh. Here, the face–vertex circulator ( FaceVertIter ) and the vertex–
vertex circulator ( VertVertIter ) are used. The former iterates over all vertices
adjacent to face , the latter iterates over all vertices adjacent to vertex *v_it .

5.2 Armadillo

To solve the system (4.30), we used open-source C++ linear algebra library Armadillo
[San10]. Armadillo uses simple Matlab-like syntax for matrix input. Solving the system
of linear equations is very straightforward too, see code excerpt 5.3.
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// specify the matrix
arma::mat Psi_i;
Psi_i
<< xx << 0 << 0 << xy << xz << 0 << x << 0 << 0 << 0 << arma::endr
<< 0 << yy << 0 << xy << 0 << yz << 0 << y << 0 << 0 << arma::endr
<< 0 << 0 << zz << 0 << xz << yz << 0 << 0 << z << 0 << arma::endr
<< xy << xy << 0 << xx+yy << yz << xz << y << x << 0 << 0 << arma::endr
<< xz << 0 << xz << yz << xx+zz << xy << z << 0 << x << 0 << arma::endr
<< 0 << yz << yz << xz << xy << yy+zz << 0 << z << y << 0 << arma::endr
<< x << 0 << 0 << y << z << 0 << 1 << 0 << 0 << 0 << arma::endr
<< 0 << y << 0 << x << 0 << z << 0 << 1 << 0 << 0 << arma::endr
<< 0 << 0 << z << 0 << x << y << 0 << 0 << 1 << 0 << arma::endr
<< 0 << 0 << 0 << 0 << 0 << 0 << 0 << 0 << 0 << 0 << arma::endr;
// solve the system
arma::vec solution = arma::solve(Gamma, Omega);

Code Excerpt 5.3: Input of matrix Ψi from (4.26) and computation of the solution
to the linear system (4.30) in Armadillo.

5.3 Time complexity

Computational complexity of the quadric fitting refinement is O (F ), where F is the
number of processed faces. Figure 5.2 shows the graph of the relation between time
needed for one iteration of our algorithm and the number of triangles in the refined
mesh. All measurements were performed on the PC with Intel Core i7 3517 Ivy Bridge
processor running Ubuntu 13.10 Saucy Salamander.

10 100 1 000 10 000 100 000
1

10

100

1 000

10 000

100 000

number of faces in the mesh

time in milliseconds

Figure 5.2: Experimental measurements of the linear time complexity of our algorithm.
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Chapter 6

Results

The properties of the quadric fitting refinement were tested from multiple points of
view. In our experiments, three major questions were addressed:

1. What is the best choice of the weights w̃i, ŵi for given input meshM?

2. Given the decimation MD of the mesh M, how well is M approximated after
MDis refined k times?

3. How good is the scheme’s ability to reconstruct quadratic surfaces?

In this chapter, we demonstrate the experimental answers to these questions.

6.1 Testing the scheme

6.1.1 Input meshes

Various meshes were used as an input for the presented algorithm. Here, we attempted
to choose the meshes that would provide a proper demonstration of various properties.

The effect of use of different weights in our algorithm is demonstrated on the well-
known Stanford bunny mesh. The results are summarized in the section 6.2. The
bunny mesh was also used to demonstrate the influence of the normal vectors on the
limit surface.

One group of meshes we worked with are the detailed meshes of the Venus of Dolní
Věstonice (figure 6.1) and of the bear-shaped animal (figure 6.2). These meshes are the
digitalized versions of the small statuettes found in Moravia south of Brno. Dated to
29,000 – 25,000 BCE, they are considered one of the oldest known pieces of ceramic in
the world.

In order to test the scheme’s ability to reconstruct arbitrary object from its coarse
approximation, the detailed Venus and bear meshes were decimated using quadric
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Figure 6.1: Venus of Dolní Věstonice, photo of the original statuette (courtesy of
[Arc13]) and two renderings of the laser-scanned mesh. The mesh has 131 114 vertices,
391 596 edges and 260 482 faces.

based edge collapse strategy. For the decimation method details, see [GH97]. We shall
remark the vertices of decimated mesh form a subset of vertices of the original mesh.

The two meshses were decimated with approximately 99% compression rate. The
original Venus mesh has 131 114 vertices, its decimation has 1 356 vertices. The original
Bear mesh has 119 519 vertices, its decimation has 1 202 vertices.

6.1.2 Note on the weights

So far, we have not specified the real weights from the objective function F, see equa-
tion (4.11). When computing the weights w̃i, ŵi, we usually consider the graph distance
DT (pi) =: DiT of the vertex pi ∈ NT from the triangle T , see equation (4.2). Moreover,
the weights are taken as functions, exponential in the additive inverse of DT .

Often in this chapter, the weights w̃i, ŵi are specified by the pairs (vi, vf ), (ni, nf ).
The scalars vi, ni ∈ R are called the initial values, the scalars vf , nf ∈ (0, 1] form the
bases of the exponential functions and are called the factors. Given the initial values
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Figure 6.2: Bear statuette from the archaeological site in Dolní Věstonice, photo of
the original statuette (courtesy of [Hit14]), the laser-scanned mesh and its decimation.
The original mesh has 119 519 vertices, 358 551 edges and 239 034 faces.

and factors, the weights for pi are computed as

w̃i = vi v
Di

T
f , (6.1a)

ŵi = ni n
Di

T
f . (6.1b)

This means the weights of the vertices from the triangle T are equal to initial values
vi, ni, the weights of vertices next to triangle T are smaller by factor vf , nf and so on.
The values of the initial values and the factors need to be adjusted experimentally for
a specific case. However, we give some analysis on how to choose the right weights in
section 6.2.

6.1.3 Measuring the error

To compare refined models, the one-sided Hausdorff distance of the vertices of the
original meshM from the refined mesh M̄ is used as an error function. If v ∈ V (M)

and d is the Euclidean distance, then

H (v) = min
v̄∈M̄

d (v, v̄) (6.2)

is the one-sided Hausdorff distance of vertex v from the refined mesh. Technically, H is
not a metric; it does not satisfy the metric axioms. (For instance, it is not symmetric.)
However, such one-sided distance is effective for estimating the error between refined
and original mesh in practical cases. The error function H is evaluated for each vertex
of the original meshM to determine
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◦ maximal error: emax = maxv∈V(M)H (v),

◦ mean error: emean = 1
|V(M)|

∑
v∈V(M) H (v),

◦ root mean square (RMS) error: eRMS =
√

1
|V(M)|

∑
v∈V(M) H

2 (v).

All measurements in this chapter are in mesh units. For reference, the lengths of
the sides of the bounding box of the Venus mesh are 108.4, 31.8, and 42.8 units, the
diagonal of the bounding box is 120.8 units long. The bounding box lengths for the
bear mesh are 67.3, 43.2 and 45.7 units, the diagonal is 89.2 units long. For error
computation and visualisation, we have used the software MeshLab.

6.2 Choosing the weights

Theoretically, any positive real number can be used as a weight w̃i of the vertex pi or
as a weight ŵi of the normal ~ni. In practice, the weights have to be chosen carefully
as their choice influences the result significantly.

We demonstrate the effect of different sets of weights on the Stanford bunny, see
figure 6.3. The bunny mesh was decimated to 3000 faces and refined using QFR with
the initial values and factors

vi = 1, vf = 1, ni = 1, nf = 1; (6.3a)

vi = 1000, vf = 1, ni = 0.0001, nf = 0.0001; (6.3b)

vi = 1000, vf = 0.0001, ni = 1, nf = 1; (6.3c)

vi = 1000, vf = 0.0001, ni = 0.0001, nf = 0.0001. (6.3d)

Top row of figure 6.3 shows the decimated bunny mesh after three iterations of QFR
with the above sets of weights. Bottom row shows the visualisation of the discrete mean
curvature of the refined meshes, which is the discrete version of the mean curvature

κH =
1

2
(κ1 + κ2) , (6.4)

where κ1 and κ2 are the principal curvatures, see [HLS93]. For the definition of the
discrete mean curvature, see [MDSB03].

Here, we are not interested in the particular values corresponding to individual
colors. More importantly, we study the variation in the discrete curvature. For this
purpose, it is sufficient to know the red color corresponds to positive mean curvature,
values close to zero are coloured green, while the blue color maps to negative values.

This example allows us to observe various interesting facts concerning the weights
in QFR. It is clear the strategy of taking all data with the same weights – as in (a) –
does not produce fine results for an irregular mesh such as the Stanford bunny. This is
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(a) (b) (c) (d)

Figure 6.3: The Stanford bunny refined with four different sets of weights from equa-
tions (6.3a-d). Bottom part shows the visualisation of the discrete mean curvature.

due to the fact that the information carried by normal vectors is very strong and has
to be treated carefully.

Assigning the normals the smaller weights (b-d) yields much realistic result. The
best results are obtained in (d), where the vertices have much higher weights than the
normals (order of 107). Also, the more distant vertices and normals have smaller weights
than the close ones (order of 104). However, using the weights that are independent of
the distance (when vf = nf = 1) can be useful in some cases, as we see in section 6.4.

To show how the normals at mesh vertices influence the resulting limit surface, we
refined two bunny meshes with the same vertex positions but different normal vectors.
The bunny at figure 6.4a has the original normals, for the one at 6.4c the normals were
generated randomly. The weights from equation (6.3d) were used for both meshes.
The results differ dramatically, see figure 6.4 even though the weights of the normal
vectors are much smaller than the weights of the vertices. The strong difference in the
results implies the importance of the role played by the normal vectors.

6.3 Comparison with linear schemes

To understand how well the quadric fitting refinement performs next to linear triangular
schemes, both approximating and interpolating, we refined the decimations of Venus
and bear four times. Besides the quadric fitting refinement, the tested methods were

45



Chapter 6. Results 6.3. Comparison with linear schemes

(a) (b) (c) (d)

Figure 6.4: The Stanford bunny with original vertex normals (a,b) and randomly
generated vertex normals (c,d), refined using the QFR with the weights from (6.3d).
The visualisation of discrete mean curvature is shown.

the
√

3-subdivision, the Modified butterfly and the Loop scheme.

For the QFR, we have used the weights (vi, vf ) = (1, 0.1), (ni, nf ) = (0.001, 0.01).
Again, we have used the one-sided Hausdorff distance to measure the error and compare
the refined meshes. The results are visualised on figure 6.5, the numerical results are
summarized in tables 6.1, 6.2, 6.3 and 6.4.

The performance of the quadric fitting refinement is comparable to the performance
of the Modified Butterfly. This is related to the fact that both QFR and Butterfly
are interpolating schemes. However, the meshes produced by our method are visu-
ally smoother. The meshes generated by the approximating schemes (

√
3-subdivision,

Loop) are also smooth, but they lack the details of the mesh produced by the QFR.

Our setup can be used for the compression of the large-scale meshes. Using only
a fraction of the original vertices, the quadric fitting refinement is able to produce a
close approximation of the original dense mesh while preserving some details.

error

scheme max. mean RMS

Venus bear Venus bear Venus bear

QFR 1.944741 0.524010 0.092007 0.047816 0.171047 0.070868
√

3 1.944741 0.552654 0.150250 0.068184 0.210626 0.090188

MB 1.874044 0.490356 0.083599 0.047714 0.164202 0.066050

Loop 1.987397 0.580256 0.157413 0.071771 0.217968 0.094510

Table 6.1: Comparison of QFR with linear schemes, 1st iteration.
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error

scheme max. mean RMS

Venus bear Venus bear Venus bear

QFR 1.944741 0.648266 0.092112 0.051493 0.173042 0.077019
√

3 1.989867 0.581215 0.166759 0.078788 0.226488 0.103254

MB 1.845731 0.500278 0.082776 0.053625 0.163477 0.072219

Loop 2.001070 0.583309 0.170478 0.081101 0.229893 0.106173

Table 6.2: Comparison of QFR with linear schemes, 2nd iteration.

error

scheme max. mean RMS

Venus bear Venus bear Venus bear

QFR 1.944741 0.670785 0.092703 0.053033 0.173825 0.079792
√

3 1.989867 0.590496 0.171830 0.082465 0.230977 0.107827

MB 1.840539 0.503913 0.083315 0.055693 0.163611 0.074660

Loop 2.001096 0.587618 0.173752 0.083461 0.232948 0.109120

Table 6.3: Comparison of QFR with linear schemes, 3rd iteration.

error

scheme max. mean RMS

Venus bear Venus bear Venus bear

QFR 1.944741 0.705566 0.092874 0.053628 0.174013 0.080872
√

3 2.002892 0.589712 0.173668 0.083702 0.232844 0.109367

MB 1.839134 0.505339 0.083516 0.056289 0.163672 0.075373

Loop 2.002858 0.588562 0.174568 0.084052 0.233709 0.109860

Table 6.4: Comparison of QFR with linear schemes, 4th iteration.
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(a) (b) (c) (d) (e)

Figure 6.5: Comparison of our method with the linear triangular schemes on the Venus
mesh. (a) Decimated Venus mesh, (b-e) decimated mesh refined with the QFR, the√

3-subdivision, the Modified Butterfly and the Loop scheme. Top row in (b-e) shows
the mesh after four iterations of given scheme, middle row shows the visualisation of the
Hausdorff distance of the original mesh from the refined meshes. Bottom row displays
the histograms of the Hausdorff distance.
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(a)

(b)

(c)

(d)

Figure 6.6: Comparison of our method with the linear triangular schemes on the bear
mesh. (a-d) decimated mesh refined with the QFR, the

√
3-subdivision, the Modified

Butterfly and the Loop scheme. Left column shows the mesh after four iterations of
given scheme, middle column shows the visualisation of the Hausdorff distance of the
original mesh from the refined meshes. Right column displays the histograms of the
Hausdorff distance.
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6.4 Reconstruction of quadratic surfaces

In the context of our refinement method, quadratic surfaces or quadrics are an impor-
tant tool. Here, we show how the can resulting scheme be used to reconstruct quadrics
from a coarse approximating mesh. Our idea was that given the nature of quadric
fitting method, with the right choice of weights, the scheme should be able to produce
good approximation of quadric surface after a few iterations. Obviously, there is a limit
to that idea; if we take too coarse mesh on the input, the error of the refined mesh will
naturally be greater.

For the purpose of testing, we use the bounded subset of quadric, which is defined
via implicit equation. Namely, we have experimented with

sphere x2 + y2 + z2 = 1, (6.5a)

elliptic paraboloid x2 + y2 + z = 1, (6.5b)

hyperbolic paraboloid x2 − y2 − z = 0, (6.5c)

cylinder x2 + y2 = 1. (6.5d)

Due to the strong symmetry in the input meshes and desired limit surfaces, we
decided to use uniform weights. Such weights are independent of the distance of
the corresponding vertex from the subdivided triangle. More precisely, we have used
w̃i = 1000, ŵi = 0.0001.

Figure 6.7: Reconstruction of the sphere x2 + y2 + z2 = 1.

Using the given weights, the scheme is capable of reconstructing a close approxima-
tion of the sphere from the cube, see figure 6.7. The initial mesh (cube) is shown after
0, 1, 2, 3 and 9 iterations, together with the color visualisation of distance of the densest
mesh from the sphere. The red color corresponds to zero distance, blue color corre-
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Figure 6.8: Reconstruction of the hyperbolic paraboloid x2 − y2 − z = 0.

sponds to distance ≥ 0.0025. The output is also influenced by the initial triangulation
of the cube.

The other surfaces exhibit good behaviour as well, see figure 6.8 for the hyperbolic
paraboloid, figure 6.9 for the elliptic paraboloid and figure 6.10 for the cylinder. First
column of these figures shows the initial meshes which were obtained from the corre-
sponding quadratic surface sampled to 25, 100 and 225 vertices. Second column is the
initial mesh after a few iterations of the QFR and the last column is the color map-
ping of the error on the original surface. Here, the blue color corresponds to distance
≥ 0.001.

Each initial mesh with 25 vertices was refined seven times, a mesh with 100 vertices
was refined six times and a mesh with 225 vertices was refined five times. The reason
why the numbers of the iterations differ is that we wanted to compare meshes with
roughly the same amount of vertices.

It appears the coarsest approximations with only 25 vertices are not sufficient to re-
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construct the surface appropriately. However, the error of the approximation decreases
as the number of vertices in the initial mesh grows. The numerical values of Hausdorff
distance from the original quadratic surfaces are summarized in table 6.5. Table 6.6
shows the values relative to the coarsest initial mesh, table 6.7 shows the values relative
to the corresponding initial mesh and table 6.8 shows the values relative to the coarsest
(initial or refined) mesh.

It is clear from table 6.6 the error of each initial mesh is linearly dependent on the
density (number of vertices) of an initial mesh. This means the error of an initial mesh
with 100 vertices is roughly four times smaller than the error of an initial mesh with
25 vertices; similarly for an initial mesh with 225 vertices. This does not hold for the
refined meshes as can be observed in table 6.8. Although in some cases (paraboloids)
the relative error of the refined mesh is smaller than the relative error of the initial
mesh, other times it gets greater (cylinder).

Overally, the scheme’s capabilities to reconstruct the tested surfaces are significant.
The obtained experimental results allow us to make a hypothesis that QFR actually
reproduces quadratic surfaces. In the future, we want to study this hypothesis from
the analytic point of view.
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Figure 6.9: Reconstruction of the elliptic paraboloid x2 + y2 + z = 1.
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Figure 6.10: Reconstruction of the cylinder x2 + y2 = 1.
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surface # of vertices iter. absolute error

in the initial mesh max. mean RMS

sphere 8

0 0.173076 0.123827 0.129736

1 0.161774 0.109749 0.115202

2 0.064192 0.040658 0.042899

3 0.022978 0.013905 0.014680

4 0.009419 0.005125 0.005555

5 0.004838 0.002164 0.002609

6 0.003343 0.001461 0.001810

7 0.002847 0.001350 0.001604

8 0.002683 0.001322 0.001547

9 0.002630 0.001313 0.001530

hyperbolic
paraboloid

25
0 0.055894 0.012171 0.015882

7 0.052361 0.003809 0.006712

100
0 0.012331 0.002400 0.003154

6 0.011568 0.000089 0.000747

225
0 0.005041 0.000993 0.001306

5 0.005041 0.000046 0.000341

elliptic
paraboloid

25
0 0.102048 0.048118 0.052024

7 0.088869 0.015077 0.023006

100
0 0.024660 0.009409 0.010224

6 0.002871 0.000111 0.000291

225
0 0.009984 0.003882 0.004221

5 0.000392 0.000023 0.000047

cylinder

25
0 0.190982 0.126526 0.138846

7 0.009681 0.000125 0.000579

100
0 0.048944 0.032588 0.035710

6 0.004184 0.000074 0.000307

225
0 0.021852 0.014559 0.015954

5 0.004589 0.000057 0.000225

Table 6.5: Summary of the numerical results from the reconstruction of the quadratic
surfaces using the QFR.
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surface # of vertices iter. relative error (in %)

init. refined max. mean RMS

sphere 8

8 0 100.00 100.00 100.00

20 1 93.47 88.63 88.80

56 2 37.09 32.83 33.07

164 3 13.28 11.23 11.32

488 4 5.44 4.14 4.28

1 460 5 2.80 1.75 2.01

4 376 6 1.93 1.18 1.40

13 124 7 1.64 1.09 1.24

39 368 8 1.55 1.07 1.19

118 100 9 1.52 1.06 1.18

hyperbolic
paraboloid

25
25 0 100.00 100.00 100.00

35 001 7 93.68 31.30 42.26

100
100 0 22.06 19.72 19.86

59 068 6 20.70 0.73 4.70

225
225 0 9.09 8.16 8.22

47 657 5 9.09 0.38 2.15

elliptic
paraboloid

25
25 0 100.00 100.00 100.00

35 001 7 87.09 31.33 44.22

100
100 0 24.17 19.55 19.65

59 068 6 2.81 0.23 0.56

225
225 0 9.78 8.07 8.11

47 657 5 0.38 0.05 0.09

cylinder

25
25 0 100.00 100.00 100.00

43 745 7 5.07 0.10 0.42

100
100 0 25.63 25.76 25.72

65 620 6 2.19 0.06 0.22

225
225 0 11.44 11.51 11.49

51 045 5 2.40 0.05 0.16

Table 6.6: Reconstruction of the quadratic surfaces, numerical data from table 6.5
relative to the coarsest initial mesh of each quadratic surface.
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surface # of vertices iter. relative error (in %)

init. refined max. mean RMS

hyperbolic
paraboloid

25
25 0 100.00 100.00 100.00

35 001 7 93.68 31.30 42.26

100
100 0 100.00 100.00 100.00

59 068 6 93.81 3.71 23.68

225
225 0 100.00 100.00 100.00

47 657 5 100.00 4.63 26.11

elliptic
paraboloid

25
25 0 100.00 100.00 100.00

35 001 7 87.09 31.33 44.22

100
100 0 100.00 100.00 100.00

59 068 6 11.64 1.18 2.85

225
225 0 100.00 100.00 100.00

47 657 5 3.93 0.59 1.11

cylinder

25
25 0 100.00 100.00 100.00

43 745 7 5.07 0.10 0.42

100
100 0 100.00 100.00 100.00

65 620 6 8.55 0.23 0.86

225
225 0 100.00 100.00 100.00

51 045 5 21.00 0.39 1.41

Table 6.7: Reconstruction of the quadratic surfaces, numerical data from table 6.5
relative to the corresponding initial mesh.
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surface # of vertices iter. relative error (in %)

init. refined max. mean RMS

hyperbolic
paraboloid

25
25 0 100.00 100.00 100.00

35 001 7 100.00 100.00 100.00

100
100 0 22.06 19.72 19.86

59 068 6 22.09 2.34 11.13

225
225 0 9.09 8.16 8.22

47 657 5 9.63 1.21 5.08

elliptic
paraboloid

25
25 0 100.00 100.00 100.00

35 001 7 100.00 100.00 100.00

100
100 0 24.17 19.55 19.65

59 068 6 3.23 0.73 1.26

225
225 0 9.78 8.07 8.11

47 657 5 0.44 0.15 0.20

cylinder

25
25 0 100.00 100.00 100.00

43 745 7 100.00 100.00 100.00

100
100 0 25.63 25.76 25.72

65 620 6 43.22 43.22 53.02

225
225 0 11.44 11.51 11.49

51 045 5 47.40 47.40 38.86

Table 6.8: Reconstruction of the quadratic surfaces, numerical data from table 6.5
relative to the coarsest mesh. The values for the initial meshes are relative to the
coarsest initial mesh, the values for the refined meshes are relative to the coarsest
refined mesh.
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Conclusions

We have introduced a new nonlinear algorithm for refinement of triangular mesh. The
scheme was successfully applied to the compression of a large mesh. An experimental
demonstration of the scheme’s ability to reconstruct quadratic surfaces was given.

The future work on the scheme can be divided in two parts. One part is the rigorous
analysis of the scheme; the other part is the improvement of the scheme itself.

The main problem we left open is the smoothness of the limit surface, produced by
the quadric fitting refinement. In the future, we want to prove the scheme is actually
G1 smooth as implied by our experimental results.

The experiments have also shown a good behaviour when it comes to the reconstruc-
tion of the quadratic surfaces. Further investigation concerning our hypothesis from
section 6.4 about the reproduction of the quadratic surfaces would be appropriate.

As we already mentioned in section 4.3, we also plan to explore the properties of
the matrix Γ. The conditions of the invertibility are not clear yet, although the matrix
Γ seems to be singular when all points pi ∈ NT lie in a plane.

One way for future improvement of the scheme is the use of alternative objective
function, perhaps leading to different optimization process. For example, instead of
using the gradient ∇x f , one could use the normalized gradient of f . This would allow
working with only normalized vectors. However, such approach necessarily leads to
nonlinear optimization and higher time complexity – the price we need to pay for
potentially improved results.

As we already mentioned in section 4.6, the scheme could be improved by computing
the weights algorithmically using the local geometry of the mesh. For instance, the
vertex vα adjacent to the angle α should be taken with greater weight than the vertex
vβ adjacent to the angle β < α. Similar conditions could be used for other metric
properties in the mesh, such as the area of a triangle or the length of an edge. Moreover,
the weights lack a thorough mathematical analysis. In this thesis, we only included an
experimental (qualitative) study of their impact on the limit surface.

An interesting complement of the proposed scheme could be the design of the dual
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decimation (if it does not exist yet). A large-scale mesh decimated using such dual
decimation and then refined back using the quadric fitting refinement would be better
approximated by the refined mesh than using any other decimation.

Two alterations to the scheme were suggested by [Fer14]. In our current setup, when
picking the new point from the quadric, the barycenter of the triangle is used. The
different setup could involve the use of another point from the interior of the triangle,
such as the center of the inscribed circle. The other alteration involves picking the point
from a cubic surface. Such setup might be interesting, although possibly superfluous.
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