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Smooth Interpolation of Curve Networks with Surface Normals
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Figure 1: Smooth interpolation of the beetle network with surface normals. The cycles in the input network (left) are efficiently extracted
and tessellated (middle left). The propagated normals (middle right) are used to compute the resulting globally smooth surface (right).

Abstract
Recent surface acquisition technologies based on microsensors produce three-space tangential curve data which can be trans-
formed into a network of space curves with surface normals. This paper addresses the problem of surfacing an arbitrary closed
3D curve network with given surface normals. Thanks to the normal vector input, the patch finding problem can be solved
unambiguously and an initial piecewise smooth triangle mesh is computed. The input normals are propagated throughout the
mesh and used to compute mean curvature vectors. We then introduce a new variational optimization method in which the
standard bi-Laplacian is penalized by a term based on the mean curvature vectors. The intuition behind this original approach
is to guide the standard Laplacian-based variational methods by the curvature information extracted from the input normals.
The normal input increases shape fidelity and allows to achieve globally smooth and visually pleasing shapes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

1 Introduction & Related Work

Traditionally, digital models of real-life shapes are acquired with
3D scanners, providing point clouds for surface reconstruction al-
gorithms. However, there are situations when 3D scanners fall
short, e.g. in hostile environments, for very large or deform-
ing objects. In the last decade, alternative approaches to shape
acquisition using data from microsensors have been developed
[SDLB07, HS08]. Small size and cost of these sensors facilitate
their integration in numerous manufacturing areas; the sensors are
used to obtain information about the equipped material, such as
spatial data or deformation behavior. Ribbon-like devices incorpo-
rated into soft materials [SSJLB14] or instrumented mobile devices
moving on the surface of an object provide tangential and positional
data along geodesic curves. In this context, we focus only on the re-
sulting surface reconstruction problem and leave aside all problems

related to acquisition and transformation of sensor signals into ge-
ometric data.

We address the problem of smooth surface reconstruction given
discrete positional and normal data along a network of 3D curves.
The goal is to obtain a fully automatic, efficient and robust method.
We propose a new mesh-based variational approach which first
searches for the topological patches, then computes a visually
pleasing surface while maintaining a high fidelity with the underly-
ing object. Our method is based on the insight that the combination
of shape and normal optimization into a compact expression does
not require the usual reformulation of normal constraints into layers
of positional boundary constraints.

Surfacing curve networks. With the advent of sketch-based mod-
eling tools, considerable effort has been dedicated to the design of
methods for surfacing curve networks originating from sketching

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



T. Stanko, S. Hahmann, G.-P. Bonneau, N. Saguin-Sprynski / Smooth Interpolation of Curve Networks with Surface Normals

tools [ZZCJ13, PLS∗15, BWSS12, SS14]. The common assump-
tion in these works is the underlying curve network was created
with some design intent, and the input information is minimal. Our
work shares the goal of shaping a surface from a network of curves.
As we assume more input data, some parts of the process are easier,
such as finding cycles in the network of curves, but we tackle the
complementary problem of providing more control over the final
shape.

Variational modeling with normal constraints. The minimum
variation surfaces [MS92] enable direct prescription of normals and
principal curvatures along a curve network; however, the resulting
optimization is highly nonlinear. The boundary constraint modeling
methods of Botsch and Kobbelt [BK04], Jacobson et al. [JTSZ10],
prescribe Ck continuity indirectly by fixing k+1 rings of vertices.
It is however not clear how to set additional rings of vertices consis-
tently with Ck continuity at the intersection of constrained curves.
This issue, referred to as twist compatibility problem or vertex
consistency problem [Far82], arises when joining smooth patches
around a common vertex of arbitrary valence with tangent plane
continuity. In contrast, our goal is to deal with normal constraints
even at the intersection of multiple curves.

Contributions. In this paper, we describe a framework for sur-
face reconstruction from a sample of points and normals along a
curve network. We introduce a new variational method in which
the standard bi-Laplacian is penalized by a term based on the mean
curvature vectors. By extracting the curvature information from the
input normals propagated throughout the mesh, we achieve a better
control over the resulting shape.

2 Framework

The surface S we aim to reconstruct is a connected 2-manifold,
with or without boundary, parameterized by p : Ω⊂R2→S ⊂R3.
Moreover, the tangent space Tp(S) varies continuously. Next, we
consider a curve network C ⊂ S which is connected and closed.
The curves ci ∈ C are C1 smooth and without self-intersections; the
intersection of two different curves is either empty or a discrete set
of points.

Overview of the method. We use the following pipeline to gener-
ate a globally smooth surface from curve and normal vector input
(Fig. 1):

1. Raw data are first interpolated with cubic splines and resampled
uniformly. We efficiently detect the network cycles, then trian-
gulate them in plane.

2. By solving two biharmonic systems with boundary constraints,
we propagate the surface normals and obtain an initial guess for
the vertex positions; this allows us to compute discrete mean
curvature for the whole mesh.

3. Finally, we solve a constrained quadratic optimization, minimiz-
ing an energy functional which takes into account the estimated
mean curvatures.

Definitions. A node n is the intersection between two or more
curves ci. A segment is a portion of curve bounded by two adja-
cent nodes. A cycle is a set of adjacent segments which consti-
tute a boundary of some surface patch. In the following section we
present an algorithm for detection of such cycles, exploiting our
knowledge of surface normals.
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Figure 2: Comparison of our method with biharmonic and trihar-
monic surfaces. Left, middle: surfaces were computed by solving
∆

2v = 0 and ∆
3v = 0 with hard constraints and without fixing the

normals. Right: result of our optimization using soft constraints.
Both torus and sphere are colored by the discrete mean curvature.

2.1 Exploiting local tangent space to detect cycles

The detection of cycles in a general curve network is a complex and
ambiguous problem, which often does not have a unique solution.
In order to overcome this problem, methods for surfacing sketched
networks adopt a variety of heuristics to mimic the human percep-
tion [ZZCJ13]. In our specific setting, due to the assumptions on
surface smoothness and manifoldness and thanks to the availability
of the oriented normals, any possible ambiguity can be efficiently
resolved. The algorithm is inspired by face extraction in edge-based
manifold data structures. First the segments adjacent to any node
are cyclically sorted with respect to the orientation given by the in-
put normal at that node. Then, starting from any (Node, Segment)
pair, we trace a unique cycle by choosing the next node as the other
endpoint of the current segment; the next segment is then picked
from the ordered set. To handle surfaces with boundary, we require
the user to tag the boundary segments.

2.2 Network tessellation

We represent the surface S as a triangle mesh M = (V,F) with
vertices V and faces F . Prior to the tessellation, the given posi-
tions and normals along the curve network C are interpolated with
cubic splines and resampled with arc length parameterization, to
obtain a curve network such as the one shown in Fig. 1. Each cy-
cle defines a closed 3D curve Γ bounding an n-sided surface patch.
We triangulate a planar projection of each cycle individually to ob-
tain the topology F of the whole mesh. The planar triangulation
is computed using the Triangle tool [She96]. The plane of projec-
tion is defined by the average position p̃ and average unit normal
ñ computed from resampled Γ. Notice that a more robust but time-
consuming 3D curve tessellation method can be used [ZJC13].

2.3 Variational smoothing

At this point of the process we have computed the topologyF of the
meshM, and we have the input positions and normals for vertices
along the curve network C. In this section, we describe a variational
method for computing the positions of the free vertices, based on
the discretization of the Laplace-Beltrami operator and of the mean
curvature vector for piecewise linear surfaces.
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Discretization of ∆. Given a piecewise-linear function fi = f (vi)
defined over the vertices vi ∈ V of M, the discretization of the
Laplace-Beltrami has the form [BS08]

∆ f (vi) = wi ∑
j∈N1(i)

wi j( f j− fi)

where N1(i) is the index set of 1-ring neighborhood of vi. The ver-
tex weights are stored in the diagonal mass matrix Mii = 1/wi,
while the edge weights wi j are stored in a symmetric matrix Ls

(Ls)i j =


−∑k∈N1(i) wik, i = j,
wi j, j ∈ N1(i),
0, otherwise.

The discrete Laplacian operator is then characterized by the ma-
trix L = M−1Ls. In the following, we use the cotangent Laplacian
wi = 1/Ai,wi j =

1
2 (cotαi j + cotβi j) where αi j and βi j are the two

angles opposite to the edge (i, j), and Ai is the Voronoi area of
vi [MDSB03].

Mean curvature vectors. To guide the optimization, we compute
the mean curvature vectors for all vertices. Let Vc denote the set
of vertices lying on the curve network C, and V f denote the re-
maining free vertices. We start by computing an initial position and
an initial normal for all vertices by solving two biharmonic systems
L2V∗ = 0 for positions and L2N∗ = 0 for normals. The propagated
normals N∗ are then normalized. We choose L as the cotangent
Laplacian based on the planar triangulation computed in Section
2.2. The boundary conditions Vc are incorporated into the system
as hard constraints by eliminating the corresponding rows of the
matrix L2 as described in [BKP∗10]. Following [Sul08], the dis-
crete mean curvature vector at the vertex vi is proportional to the
integral of the co-normal η, i.e. the vector product of the normal
and the unit tangent to the boundary

2h(vi) =
∮

∂N1(i)
ηds

computed along the boundary of the 1-neighborhood of vi. In or-
der to take the input normals into account, we evaluate this integral
using the propagated normals N∗ rather than the triangle normals.
More precisely, we compute the mean curvature vector for the ini-
tial surface as follows:

2h(vi) = ∑
( j,k)∈e(i)

n∗j +n∗k
‖n∗j +n∗k ‖

× (vk−v j),

where n∗j denotes the propagated normal at the vertex v j, × de-
notes the vector product, and e(i) is the set of oriented edges ( j,k)
opposite to the vertex vi.

Optimization. The constrained vertices Vc are further partitioned
into hard constraints Vb and soft constraints Vs. The set of soft
constraints might be empty if we require exact interpolation of
all positions; the soft formulation becomes convenient if the in-
put data are subject to noise. Without loss of generality, we as-
sume the index sets Ib = {1, . . . ,b}, Is = {b+1, . . . ,b+ s}, I f =
{b+ s+1, . . . ,b+ s+ f} correspond to hard, soft and free vertices,
respectively. We can now define the energy functional

E (V) = ∑
v∈V
‖∆2v‖2 +ω1 ∑

v∈V
‖∆v+2h(v)n∗‖2 +ω0 ∑

vs∈Vs

‖vs−v∗s ‖2

Figure 3: Influence of input normals: the two circular curves (red)
are given as input together with normal vectors of different ori-
entation (red normals). Propagation of the input normals over the
surface (blue) guides the computation of three different shapes.

were ωi ∈R+ are weights, h(v) = ‖h(v)‖ is the scalar mean curva-
ture at v and n∗ is the propagated normal at v. The first term forces
the mesh to be as-biharmonic-as-possible; the last term pushes
the result toward the soft constraints. The middle term, summed
over all vertices, enables to match the mean curvature and the
propagated normals and is derived from the well-known formula
∆v =−2hn.

In order to exactly interpolate the hard constraints v∗b , we per-
form the following optimization:

minE (V) s.t. vb = v∗b , b ∈ Ib .

The energy E is written in matrix form as

E (V) = ‖L2V‖2 +ω1‖LV−2H‖2 +ω0‖ĨV−V∗s ‖2

and minimized by solving[
WA>A C>

C 0

][
V
Λ

]
=

[
WA>B

V∗b

]
where

A =

L2

L
Ĩ

 , B =

 0
H
V∗s

 , C =
[
Ib 0

]
, Ĩ =

[
0 Is 0

]
,

and Λ is the matrix of Lagrange multipliers, W is the matrix of
weights ωi, Ik is the k× k identity matrix, and H is the matrix of
propagated normals N∗ scaled by the mean curvature h.

3 Results

The sphere and torus curve networks on Fig. 2 allow us to compare
our method with surfaces obtained by solving biharmonic (L2) and
triharmonic (L3) systems ∆

kv = 0, k = 2,3, using hard positional
constraints and no normal constraints. The discrete mean curvature
plots reveal interesting details; notice the discontinuity on the L2
and L3 torus and on L2 sphere located at the intersections of input
curves. On the other hand, our surface is smooth and contains no
such singularities.

To demonstrate the control provided by the input normals we
sample the positions along two circles from the same cylinder while
changing the directions of the normals, see Fig. 3. With the orig-
inal normals, the cylindrical surface is nicely reconstructed; using
the two sets of rotated normals results in the barrel and bottleneck
surfaces, as expected intuitively. The method works well even for
challenging input data, such as the networks with large curvature
variations on Fig. 4.
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Figure 4: Reconstructing surfaces with strong variations in curvature and high valence intersections in the curve network. (Left) input
network with normals, (middle left) reconstructed surface with visualised constraints, (middle right) without visualised constraints (right)
mean curvature plot. In these examples, all positional constraints are hard and ω1 = 15000.

4 Discussion & Future Work

We have introduced a Laplacian-based surface reconstruction
method from curve and normal input. After propagating the input
normals smoothly over the surface and computing the correspond-
ing mean curvature vectors, the normal constraints are integrated
into the energy functional. Efficiency and robustness are achieved
by using a linearized objective functional, such that the global op-
timization amounts to solving a sparse linear system of equations.

The presented framework is intended to serve for curve networks
with normal vectors acquired by mobile devices equipped with mi-
crosensors. For this application we plan the following extensions.
The method, currently requiring a closed curve network, could be
modified to work with open curve networks. The initial tessellation
could be improved by using a more advanced 3D patching algo-
rithm. Since our current implementation runs at interactive time
rates (order of 0.1s for the beetle mesh with 10k vertices and 1k
constraints), we plan to allow the user to scan objects interactively
by incrementally adding curves. We therefore want to investigate
how to update the optimization when the input data changes lo-
cally.
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