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Abstract

Recent surface acquisition technologies based on microsensors produce three-space tangential curve data which can be
transformed into a network of space curves with surface normals. This paper addresses the problem of surfacing an
arbitrary closed 3D curve network with given surface normals. Thanks to the normal vector input, the patch finding
problem can be solved unambiguously and an initial piecewise smooth triangle mesh is computed. The input normals
are propagated throughout the mesh. Together with the initial mesh, the propagated normals are used to compute mean
curvature vectors. We then compute the final mesh as the solution of a new variational optimization method based
on the mean curvature vectors. The intuition behind this original approach is to guide the standard Laplacian-based
variational methods by the curvature information extracted from the input normals. The normal input increases shape
fidelity and allows to achieve globally smooth and visually pleasing shapes.
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1. Introduction

Traditionally, digital models of real-life shapes are ac-
quired with 3D scanners, providing point clouds for sur-
face reconstruction algorithms. However, there are situ-
ations when 3D scanners fall short, e.g. in hostile envi-
ronments, for very large or deforming objects. In the last
decade, alternative approaches to shape acquisition using
data from microsensors have been developed [1, 2]. Small
size and cost of these sensors facilitate their integration in
numerous manufacturing areas; the sensors are used to
obtain information about the equipped material, such as
spatial data or deformation behavior. Ribbon-like devices
incorporated into soft materials [3] or instrumented mo-
bile devices moving on the surface of an object provide
tangential and positional data along geodesic curves – see
Figure 2 for an example acquisition setup. In this context,
we focus on the resulting problem of surface reconstruc-
tion and leave aside all issues related to acquisition and
transformation of sensor signals into geometric data.

We address the problem of fitting a smooth surface
to given discrete positional and normal data along a net-
work of 3D curves. The goal is to obtain a fully auto-
matic, efficient and robust method producing fair and vi-
sual pleasing surfaces consistent with the shape suggested
by the input curves. A common practice in shape mod-
eling is to rely on normal vector input in order to en-
hance shape quality and fidelity. Normal input can be
found e.g. as boundary constraints in variational modeling
[4, 5, 6], as geometric invariants [7], for computing flow-
fields guiding the surface construction process, as Hermite
data in surface fitting [8, 9] or indirectly describing silhou-

Figure 1: Influence of input normals: the two circular curves (red)
are given as input together with normal vectors of different orientation
(red normals). Propagation of the input normals over the surface (blue)
guides the computation of three different shapes.

ette constraints [10, 11] or shading behavior of 2D and 3D
shapes [12, 13, 14] to cite a few possible applications.

More generally, surfacing 3D networks is a fundamen-
tal problem in geometric modeling. Apart from traditional
CAD modeling [15, 8, 16, 9], sketch-based interfaces [17,
18, 19] and sketch-based modeling techniques [20, 21, 22,
23, 24, 25] have recently become increasingly popular in
a range of versatile application areas. Even though normal
vectors are not part of a typical sketch-based modeler out-
put [26, 17, 18], recent state of the art [24] in surfacing
3D curve networks however requires estimation of normal
vectors along the curve network.

The method we propose is a new mesh-based data-
driven variational approach. We show how to generate
high quality surfaces faithful to the input data by solving
linear systems only. The key insight is the decoupling of
normals from positions for the curve-to-patch extrapola-
tion. The method first interpolates positions and normals
separately over patches enclosing cycles of curves, then
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Figure 2: In this example, we scan curves with normals on the cone
using the Morphorider, a small mouse-like device instrumented with
microsensors. The position and normal information along the scanned
curves can serve as input to our algorithm.

estimates mean curvature values at vertices, and finally
optimizes for positions that best match the mean curva-
ture vector formed by the mean curvature value and nor-
mal computed in the previous steps. The combination of
shape and normal optimization into a compact expression
has the advantage of not requiring the usual reformulation
of normal constraints into layers of positional boundary
constraints.

Contributions. This paper is an extended version of the
earlier short paper [27] in which we have first introduced
a variational approach for smooth surface modeling to fit
a given curve network with surface normals. The main
contribution of the earlier short paper was to combine the
standard Laplacian with a term based on estimation of the
mean curvature normal. The intuition behind this original
approach was to guide the standard Laplacian-based vari-
ational methods by the curvature information extracted
from input normals. The normal input increases shape fi-
delity and allows to achieve globally smooth and visually
pleasing shapes.

In comparison with the original short paper, this pa-
per provides an expanded discussion of a modified mean
curvature estimation used inside our Laplacian-based sur-
face modeling framework that supports the generation of
a continuously varying normal vector field. Our mean
curvature estimation blends the positional and normal in-
put so that the solution of our optimization conforms to
both constraints. Additionally, we propose a simplified
and more compact version of the energy functional used to
compute a globally smooth surface with constraints along
curve network. Most importantly, we provide more re-
sults, a convergence analysis and an in-depth comparison
of our algorithm with state of the art methods.

2. Related work

Surfacing curve networks. With the advent of sketch-based
modeling tools, such as interactive 3D sketching tools [26,
28, 17, 18] or methods inferring 3D curve networks from
2D sketches [29, 19], considerable effort has been ded-
icated to the design of methods for surfacing curve net-
works originating from sketching tools [20, 30, 31, 32,
24]. The common assumption in these works is that the
underlying curve network was created with some design
intent, and that the input information is minimal. Rose
et al. [20] solve the patch finding problem and compute
a developable boundary triangulation. Bessmeltsev et al.
[31] interpolate a general 3D network of curve cycles by
computing quad-mesh patches whose isolines capture the
design flow inherent in the network. Sadri and Singh
[32] compute self-intersection-free surface patches based
on a flow complex induced by the boundary curves. Both
methods compute surface patches individually and do not
seek a globally smooth surface across dedicated boundary
curves as we do. Pan et al. [24] use rotation-minimizing
frames along the curves to estimate normal vector input
and construct globally smooth surface patches having a
curvature direction field consistent with an orthogonal flow
field implied by the boundary curves. This makes sense
in the setting of sketch-based modeling where the artist-
drawn input represents particular characteristic shape cur-
ves, such as representative flow-lines. This is a strong as-
sumption on the input network we do not make; our input
curves, in contrast, can have arbitrary shapes (Figure 9).

n-sided patches. n-sided boundary patches – possibly with
prescribed tangent ribbons to achieve G1-continuity across
boundary curves – can be computed using transfinite inter-
polation methods (Coons patches [15], Gregory patches
[8], Generalized Bézier patches [9] or subdivision approa-
ches [33]). The first group of methods assumes a pre-
segmentation of each input cycle into n curve segments
with low-distortion mapping to a convex planar n-sided
polygon. Prescribed tangent ribbons must be defined con-
sistently and twists estimated accordingly. Methods in the
second group quadrangulate the input cycles with topo-
logical guarantees on the extraordinary vertices and ap-
proximate the coarse mesh using well-known subdivision
schemes. The variational approach of Boier-Martin et al.
[34] integrates normal constraints by locally fitting the
vertex neighborhood with a quadratic polynomial in order
to estimate partial derivatives. However, the integration
of normal constraints violates the independence of spatial
dimensions of the linear system to solve.

Shading-based variational modeling. Gingold and Zorin [12]
modify a given input shape by drawing strokes on a shaded
image of the surface. The strokes indirectly impose nor-
mal constraints that are solved by modifying the position
of the surface along the strokes, while the normals of the
surface outside the strokes should not change. In contrast,
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we impose both positional and normal constraints along
input curves, and compute new positions and normals ev-
erywhere else.

Variational modeling with normal constraints. The mini-
mum variation surfaces [35] enable direct prescription of
normals and principal curvatures along a curve network
and may result in high quality shapes; however, the result-
ing optimization is nonlinear. Thanks to their speed and
robustness, linear variational surface modeling and defor-
mation methods have attracted an impressive amount of
interest in the past few years, even though they only pro-
vide approximate results with respect to nonlinear prob-
lems; see the survey by Botsch and Sorkine [36]. We
focus on linear methods using normal constraints in ad-
dition to standard positional constraints. The boundary
constraint modeling methods of Botsch and Kobbelt [4],
Jacobson et al. [5], and Andrews et al. [6] prescribe Ck

continuity indirectly either by fixing k − 1 rings of vertices
or by adding a ghost geometry. Setting additional rings
of vertices consistently with Ck continuity at intersections
of constrained curves is not a trivial task. This issue, re-
ferred to as twist compatibility problem or vertex consis-
tency problem [37], arises when joining smooth patches
around a common vertex of arbitrary valence with tangent
plane continuity. Jacobson et al. [5] solve the problem by
freezing the 1-neighborhood of each vertex with normal
constraint. Vertices with conflicting neighborhoods are
fixed in the least-squares sense. Andrews et al. [6] propose
a linear variational modeling system from curve networks
using a ghost geometry for solving inconsistent Laplacian
constraints. This technique only enables to generate sharp
edges along arbitrary curves. Schneider and Kobbelt [38]
propose a multigrid fairing method with prescribed posi-
tions and normals; only constraints along simple curves
are considered. Crane et al. [39] present a fairing method
using Willmore flow expressed in curvature space that al-
lows to prescribe positions and binormal vectors along the
surface boundary.

All these methods share the treatment of normals as
boundary constraints when computing the positions. Our
approach is different. By separately interpolating normals
and positions before combing them into a mean curvature
vector field which is then used to compute the best match-
ing surface, the propagated normals serve as a guiding
vector field as illustrated in Figure 1. We therefore avoid
the vertex consistency problem and can deal with nor-
mal constraints even at the intersection of multiple curves.
More importantly, unlike all the approaches above, our
method does not require an extra parameter to control the
magnitude of normals.

3. Framework

The surface S we aim to reconstruct is a connected
2-manifold, with or without boundary, parameterized by
p : Ω ⊂ R2 → S ⊂ R3. Moreover, the tangent space

Tp(S) varies continuously. Next, we consider a curve net-
work C ⊂ S which is connected and closed. The curves
ck(t) = p (u(t), v(t)) ∈ C are C1 smooth and without self-
intersections; the intersection of two different curves is ei-
ther empty or a discrete set of points. Knowing the topol-
ogy of the curve network C, the input to our algorithm is a
discrete sample of positions pi = ck(ti) = p (u(ti), v(ti)) ∈ C,
together with the unit surface normals ni ⊥ Tpi (S).

3.1. Overview of the method
We use the following pipeline to generate a globally

smooth surface from curve and normal vector input:

1. Raw data are first interpolated with cubic splines
and resampled uniformly. We efficiently detect the
network cycles, then triangulate them in plane.

2. By solving two biharmonic systems with boundary
constraints, we both propagate the surface normals
and obtain an initial guess for the vertex positions;
this allows us to compute discrete mean curvature
for the whole mesh.

3. Finally, we solve a linear optimization problem com-
puting a surface that best matches the mean curva-
ture vector formed by the mean curvature value and
the normal computed in the previous step.

3.2. Exploiting local tangent space to detect cycles
The detection of cycles in a general curve network is a

complex and ambiguous problem, often without a unique
solution. In order to overcome this problem, methods for
surfacing sketched networks adopt a variety of heuristics
to mimic the human perception [30]. In our specific set-
ting, due to the assumptions on surface smoothness and
manifoldness, and the availability of the oriented normals,
any possible ambiguity can be efficiently resolved as fol-
lows.

Let us call a node the intersection between two or more
curves. A segment is a portion of curve bounded by two ad-
jacent nodes. A cycle is a set of adjacent segments which
constitute a boundary of some surface patch; the curve cy-
cles are assumed to be contractible on S. Our algorithm is
inspired by face extraction in edge-based data structures
for manifolds. First, the segments adjacent to any node
are cyclically sorted with respect to the orientation given
by the input normal at that node. Then, starting from any
(Node, Segment) pair, we trace a unique cycle by choos-
ing the next node as the other endpoint of the current seg-
ment. The next segment is then picked from the ordered
set. To handle surfaces with boundary, we require the user
to tag all boundary segments.

3.3. Network tessellation
We represent the surface S as a triangle mesh M =

(V,F ) with vertices V and faces F . Prior to the tessella-
tion, the positions pi and normals ni along the curve net-
work C are interpolated with cubic splines and resampled
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with arc length parameterization, providing a uniformly
sampled network (Figure 8 top). Each cycle defines a
closed 3D curve Γ bounding an n-sided surface patch. We
triangulate a planar projection of each cycle individually
to obtain the topology F of the whole mesh; the triangu-
lation is computed using Shewchuk’s Triangle [40]. The
plane of projection for each cycle is defined by the aver-
age position p̃ and average unit normal ñ computed from
resampled Γ.

Even though this simple planar projection is not nec-
essarily injective, we have found that it leads to a much
smaller distortion between the planar triangulation and
the mesh triangulation, in comparison with other planar
embeddings of Γ with guaranteed injectivity (e.g. mapping
to a circle or a polygon). Notice that a more robust but
time-consuming 3D curve tessellation method can be used
[41].

3.4. Variational smoothing
At this point of the process we have computed the

topology F of the meshM, and we have the constraints –
positions and normals – for vertices along the resampled
curve network C. In this section, we describe a variational
method for computing the positions of the free vertices,
based on the discretization of the Laplace-Beltrami opera-
tor and of the mean curvature vector for piecewise linear
surfaces.

Discretization of ∆. Given a piecewise-linear function fi =

f (vi) defined over the vertices vi ∈ V ofM, the discretiza-
tion of the Laplace-Beltrami has the form [36]

∆ f (vi) = wi

∑
j∈N1(i)

wi j( f j − fi)

where N1(i) is the index set of 1-ring neighborhood of vi.
The vertex weights are stored in the diagonal mass ma-
trix Mii = 1/wi, while the edge weights wi j are stored in a
symmetric matrix Ls

(Ls)i j =


−
∑

k∈N1(i) wik, i = j,
wi j, j ∈ N1(i),
0, otherwise.

The discrete Laplace operator is then characterized by the
matrix L = M−1Ls. In the following, we use the cotangent
Laplacian wi = 1/Ai,wi j = 1

2 (cotαi j + cot βi j) where αi j and
βi j are the two angles opposite to the edge (i, j), and Ai is
the Voronoi area of vi [42].

Initial vertices and propagated normals. Let Vc denote the
set of vertices lying on the curve network C, and V f de-
note the remaining free vertices. We start by computing
initial positions and initial normals for all vertices by solv-
ing two biharmonic systems: L2V∗ = 0 for positions and
L2N∗ = 0 for normals. The propagated normals N∗ are

then normalized. We choose L as the cotangent Lapla-
cian based on the planar triangulation computed in Sec-
tion 3.3. The positional and normal boundary conditions
are incorporated into the systems as hard constraints by
eliminating the corresponding rows of the matrix L2 as
described in [43].

Mean curvature guide. From the initial vertices v∗ and the
propagated normals n∗ we now compute mean curvature
information that will guide the optimization. Following
Sullivan [44], the discrete mean curvature vector at a mesh
vertex v is proportional to the integral of the conormal
η = n × e, i.e. the vector product of the normal and the
unit tangent to the boundary,

2h(v) =

∮
∂N1

η ds

computed along the boundary of the 1-neighborhood N1 of
v. Sullivan [44] evaluates this integral using the triangle
normals defined by the mesh vertices v.

v∗i+1 v∗

v∗i
n∗i

n∗i+1

n∗

h

In order to take the
input data into account,
we evaluate this inte-
gral using the propa-
gated normals n∗ rather
than the triangle nor-
mals. More precisely, we
compute the mean cur-
vature vector for the initial surface by summing the con-
tributions for all oriented edges opposite to v∗:

h(v∗) =
1
A

n−1∑
i=0

n∗ + n∗i + n∗i+1

‖n∗ + n∗i + n∗i+1‖
× (v∗i+1 − v∗i ), (1)

where n∗ denotes the propagated normal at the vertex v∗
of valence n, whose Voronoi area is A and its neighbors are
v∗i (indices taken modulo n, see inset).

Formula (1) for computing the mean curvature is a key
part to our method. Its originality lies in blending together
the positional information (the initial vertices v∗) with the
additional normal information (the propagated normals
n∗) not directly inferred from the positions. In contrast,
the usual discrete mean curvature formulations, such as
the cotan formula [42], rely solely on vertex positions. We
illustrate this originality in Figure 3, where we show three
discrete mean curvatures, one based on [42] (left), and
two on our formula (1) (middle and right) computed with
the same geometry, but using two different normal fields.
It can further be observed in Figure 3 that our mean curva-
ture measure behaves at least as well as the standard mea-
sures even with a low quality mesh. Since we apply the
mean curvature formula in this paper to good quality tri-
angulations resulting from a planar Delaunay tessellation
(Section 3.3) we did not investigate the incorporation of
propagated normals into more robust discrete mean cur-
vature measures such as [45].
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Figure 3: Mean curvature of the irregular horse mesh. (Left) the cotan formula [42] which is based solely on the mesh vertices, (middle & right)
the 3-averaging formula (1), which additionally takes into account a normal at each vertex. For the middle image, the vertex normal is taken as the
average of the face normals. In the rightmost example we smoothed the vertex normals before applying formula (1).

Optimization. We can now define the energy functional

E (V) =
∑
v∈V

‖∆v + h(v)n∗‖2 (2)

with h(v) = ‖h(v)‖ being the scalar mean curvature at v.
This formulation, derived from the well-known formula
∆v = −h n, enables us to match the mean curvature and
the propagated normals. In order to exactly interpolate
the positional constraints Vc, we perform the following
optimization:

min E (V) s.t. v = v∗ for all v ∈ Vc . (3)

The energy E is written in matrix form as

E (V) = ‖LV − 2H‖2

and minimized by solving[
L>L C>

C 0

] [
V
Λ

]
=

[
L>H
V∗c

]
with

C =
[
Ic 0

]
, V =

[
Vc

V f

]
,

where Λ is the matrix of Lagrange multipliers, Ic is the c×c
identity matrix, and H is the matrix of propagated normals
N∗ scaled by the mean curvature h.

4. Results

4.1. Normal control
In Figure 1 we demonstrate the shape control provided

by the input normals. The fixed vertex positions are sam-
pled along two parallel circles from the same cylinder while
prescribing three different sets of normal vectors along the
circles. With the original normals (Fig. 1 left), the cylin-
drical surface is nicely reconstructed. Using the two other
sets of rotated normals (Fig. 1 middle, right) results in
the barrel and bottleneck surfaces, as expected intuitively.
The method works well even for challenging input data,
such as the networks with large normal curvature vari-
ations and high valence curve intersections in Figure 8,
or networks with large curvature variation in the tangent
plane in Figure 9.

4.2. Comparison with previous methods
Botsch and Kobbelt [4] state that solving for the kth-

order Laplacian while imposing boundary conditions up
to Ck−1 implies a non-trivial smooth solution:

∆kS (x) = 0, x ∈ Ω\δΩ;

∆ jS (x) = b j(x), x ∈ δΩ , j < k.
(4)

Notice that the authors in [4] did not implement boundary
constraints directly; instead, they fixed positions of k − 1
rings of vertices to prescribe Ck−1 boundary constraints.
This setting prevents dealing with arbitrary constrained
curve networks without knowing the positions of k − 1
rings of vertices. It is therefore impossible to compare our
method to theirs; we can however compare our method to
the analogous formulation given by (4). To this end, we
have implemented the system (4) for k = 2. To avoid fixing
the positions of 1-ring vertices along constrainted curves,
we directly cast the b1 as equality constraints of the linear
system. See Figure 5 for visual comparison of various er-
ror metrics on sphere and torus, and Table 1 for numerical
analysis of distance to ground truth.

The method of Pan et al. [24] is considered the state of
the art in surfacing sketched curves. We find it interesting
to include a comparison with this method, although the
two algorithms do not share the same input since [24] do
not know the normals a priori. The comparison with their
method on the gamepad is shown in Figure 4. The normals
along the constrained curves, required by our method,
were sampled from the final surface of Pan et al. [24].
From left to right, we show the output of Pan et al. [24],
the surface computed with constrained linear differential
equation method (4) with direct prescription of normals,
and our surface.

Our method combines the algorithmic simplicity with
high fidelity to the reconstructed shape, and at the same
time maintains the fairness of the final surface. Inter-
esting details are revealed by looking at the isophotes.
On the surface of Pan et al. [24], the isophotes are of
globally poor quality, with undesirable wiggles visible at
closer inspection, see the close-up to the concave region.
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Figure 4: On sketched networks, the results of our algorithm are similar to the method of Pan et al. [24], which assumes the input curves capture the
flow field of the underlying surface. The isophotes on our surface vary more smoothly, suggesting higher order of continuity. Left to right: the method
of Pan et al. [24]; the formulation (4) (Section 4.2) with direct prescription of normals; our algorithm. All three meshes have the same normals along
the curve network.

While the middle surface computed with (4) seems glob-
ally smoother than the left surface, the linearization arti-
facts are evident (close-up, handle). The colored render-
ings of the three surfaces look similar at the first glance;
notice however the improved quality of specular highlights
on our gamepad compared to the left surface.

4.3. Measuring the error
In Figure 5 we compare three error measures on well

known geometries, the sphere and the torus: mean cur-
vature, distance to ground truth and difference between
propagated and computed normals. We compare the error
from the standard biharmonic and triharmonic surfaces
with positional constraints along the curve network (left
two columns) and the method (4) (middle right) with our
surfaces (right column). We also show the isophote pat-
tern which indicates globally smooth shapes, also across
the curve network.

Notice that the standard linear variational methods ex-
hibit the well-known undesired defects due to the lineariza-
tion of the energy functionals, and the shapes have high
curvatures along the curve network and low curvature ev-
erywhere else. In contrast our solution has a much smaller
curvature variation. Many authors spend considerable ef-
fort in improving the shape of linear methods using e.g.
reparameterizations or multigrid methods [38, 4, 5]. It
can be observed that our shapes succeed in mimicking the

data method # V f / Vc
distance error (V f only)

min max mean RMS

sphere, r = 1

ours

19545 / 738

0.0004 0.0502 0.0319 0.0343

method (4) 0.0001 0.3262 0.1412 0.1635

biharmonic 0.0006 0.2887 0.1465 0.1669

triharmonic 0.0003 0.3994 0.1641 0.1918

torus, R = 4, r = 2

ours

24321 / 564

0.0008 0.3207 0.1260 0.1464

method (4) 0.0021 0.7917 0.4095 0.4587

biharmonic 0.0028 0.7967 0.4122 0.4624

triharmonic 0.0016 0.6068 0.3255 0.3626

Table 1: Distance from analytic ground truth, measured on the free ver-
tices.

desired non-linear shape behaviors simply by combining
two linear processing steps: normal propagation and con-
strained fitting, see the curvature plots in Figure 5. We ar-
gue that the normal propagation step which precomputes
a continuously varying normal field is a key ingredient for
this nice property.

4.4. Convergence analysis
Given an input curve network, we have computed a se-

quence of initial planar triangulations (Section 3.3) with
a sampling distance divided by two, resulting in a num-
ber of triangles approximately multiplied by four. We then
applied our variational smoothing method (Section 3.4).
This process results in a sequence of meshes Mi. Since
there is no analytic form of limi→∞Mi, we illustrate the
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Figure 6: The meshes computed using our method converge towards a
limit surface upon refinement of the sampling distance; see Section 4.4
for details.

convergence in Figure 6 by plotting the Hausdorff distance
between the consecutive meshesMi,Mi+1. The three curves
correspond to the sphere (Fig. 5), the beetle and the bumpy
cube (Fig. 8) networks.

4.5. Hard constraints vs. soft constraints
Until now, in all of our examples, the positions of all

vertices along input curves were exactly interpolated as
hard constraints by solving (3). In case of noisy input data,
which usually occurs when acquiring data with scanning
or mobile devices (see Section 1), it might be useful to
modify the problem (3) in order to incorporate soft posi-
tional constraints as follows:

Eso f t (V) =
∑
v∈V

‖∆v + 2h(v)n∗‖2 + ω
∑

vs∈Vs

‖vs − v∗s‖
2

where the constrained vertices Vc are further partitioned
into hard constraintsVh and soft constraintsVs. Figure 7
illustrates the robustness of this approach; in this test, we
artificially perturbed the positions and normal directions
along the input network. Our method with soft constraints
produces stable output, while still preserving the shape
fidelity.

Figure 7: If the input data are noisy, soft constraints (right) produce
better results than hard constraints (left) while still maintaining high
overall shape fidelity. In this example, we artificially added 5% of noise
to both positions and normals.

5. Limitations

A weakness of our method lies in the fact that the
cotangent weights for the Laplacian matrix L are inferred
from the planar triangulation, computed for each patch in-
dividually as explained in Section 3.4. Such parametriza-
tion is not isometric to the actual surface patch; as a con-
sequence, the weights are not optimal. Nevertheless our
examples show that it does not impact the smoothness of
our results across surface patches.

The framework cannot automatically handle curve net-
works which are open or consist of more than one compo-
nent. However, the optimization (3) is not limited by the
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Figure 8: Smooth surfaces reconstructed using our method.

topology of the network, only by the availability of the
initial mesh.

6. Conclusion

We have introduced a Laplacian-based surface recon-
struction method from curve and normal input. After prop-
agating the input normals smoothly over the surface and
computing the corresponding mean curvature vectors, the
normal constraints are integrated into the energy func-
tional. Efficiency and robustness are achieved by using
a linearized objective functional, such that the global op-
timization amounts to solving a sparse linear system of
equations.

The presented framework is intended to serve for curve
networks with normal vectors acquired by mobile devices
equipped with microsensors. For this application we plan
the following extensions. The method, currently requiring
a closed curve network, could be modified to work with
open curve networks. The initial tessellation could be im-
proved by using a more advanced 3D patching algorithm.
Since our current implementation runs at interactive time
rates (order of 0.1s for a mesh with 10k vertices and 1k
constraints), we plan to allow the user to scan shapes in-
teractively by incrementally adding curves. We therefore
want to investigate how to update the optimization when
the input data changes locally.
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